Introduction to Smooth Manifolds (Graduate Texts in Mathematics)

John Lee

ISBN 10: 1489994750 ISBN 13: 9781489994752
Verlag: Springer, 2014
Neu Paperback

Verkäufer Revaluation Books, Exeter, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 6. Januar 2003


Beschreibung

Beschreibung:

2nd edition. 724 pages. 9.30x6.20x1.50 inches. In Stock. Bestandsnummer des Verkäufers zk1489994750

Diesen Artikel melden

Inhaltsangabe:

This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer.

This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A fewnew topics have been added, notably Sard’s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.

Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.

Über die Autorin bzw. den Autor:

John M. Lee is Professor of Mathematics at the University of Washington in Seattle, where he regularly teaches graduate courses on the topology and geometry of manifolds. He was the recipient of the American Mathematical Society's Centennial Research Fellowship and he is the author of four previous Springer books: the first edition (2003) of Introduction to Smooth Manifolds, the first edition (2000) and second edition (2010) of Introduction to Topological Manifolds, and Riemannian Manifolds: An Introduction to Curvature (1997).

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Introduction to Smooth Manifolds (Graduate ...
Verlag: Springer
Erscheinungsdatum: 2014
Einband: Paperback
Zustand: Brand New
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Lee, John
Verlag: Springer, 2014
ISBN 10: 1489994750 ISBN 13: 9781489994752
Gebraucht paperback

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Artikel-Nr. mon0003649668

Verkäufer kontaktieren

Gebraucht kaufen

EUR 38,37
Währung umrechnen
Versand: EUR 12,37
Von USA nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

John Lee
ISBN 10: 1489994750 ISBN 13: 9781489994752
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer.This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A fewnew topics have been added, notably Sard¿s theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 724 pp. Englisch. Artikel-Nr. 9781489994752

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

John Lee
Verlag: Springer, 2014
ISBN 10: 1489994750 ISBN 13: 9781489994752
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2nd edition. 724 pages. 9.30x6.20x1.50 inches. In Stock. Artikel-Nr. __1489994750

Verkäufer kontaktieren

Neu kaufen

EUR 54,25
Währung umrechnen
Versand: EUR 11,71
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

John Lee
ISBN 10: 1489994750 ISBN 13: 9781489994752
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an introductory graduate-level textbook on the theory of smooth manifolds. Its goal is to familiarize students with the tools they will need in order to use manifolds in mathematical or scientific research--- smooth structures, tangent vectors and covectors, vector bundles, immersed and embedded submanifolds, tensors, differential forms, de Rham cohomology, vector fields, flows, foliations, Lie derivatives, Lie groups, Lie algebras, and more. The approach is as concrete as possible, with pictures and intuitive discussions of how one should think geometrically about the abstract concepts, while making full use of the powerful tools that modern mathematics has to offer.This second edition has been extensively revised and clarified, and the topics have been substantially rearranged. The book now introduces the two most important analytic tools, the rank theorem and the fundamental theorem on flows, much earlier so that they can be used throughout the book. A fewnew topics have been added, notably Sard's theorem and transversality, a proof that infinitesimal Lie group actions generate global group actions, a more thorough study of first-order partial differential equations, a brief treatment of degree theory for smooth maps between compact manifolds, and an introduction to contact structures.Prerequisites include a solid acquaintance with general topology, the fundamental group, and covering spaces, as well as basic undergraduate linear algebra and real analysis. Artikel-Nr. 9781489994752

Verkäufer kontaktieren

Neu kaufen

EUR 60,47
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb