Improving Classifier Generalization
Nishchal K. Verma
Verkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Neu - Hardcover
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenVerkauft von buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
AbeBooks-Verkäufer seit 23. Januar 2017
Zustand: Neu
Anzahl: 2 verfügbar
In den Warenkorb legenNeuware -This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 192 pp. Englisch.
Bestandsnummer des Verkäufers 9789811950728
This book elaborately discusses techniques commonly used to improve generalization performance in classification approaches. The contents highlight methods to improve classification performance in numerous case studies: ranging from datasets of UCI repository to predictive maintenance problems and cancer classification problems. The book specifically provides a detailed tutorial on how to approach time-series classification problems and discusses two real time case studies on condition monitoring. In addition to describing the various aspects a data scientist must consider before finalizing their approach to a classification problem and reviewing the state of the art for improving classification generalization performance, it also discusses in detail the authors own contributions to the field, including MVPC - a classifier with very low VC dimension, a graphical indices based framework for reliable predictive maintenance and a novel general-purpose membership functions for Fuzzy Support Vector Machine which provides state of the art performance with noisy datasets, and a novel scheme to introduce deep learning in Fuzzy Rule based classifiers (FRCs). This volume will serve as a useful reference for researchers and students working on machine learning, health monitoring, predictive maintenance, time-series analysis, gene-expression data classification.
Dr Sevakula Rahul Kumar has over 10 years of research experience in machine learning (ML) and deep learning (DL). He received his Bachelor’s degree from the National Institute of Technology (NIT) Warangal, India in 2009 and later his Ph.D. degree from the Indian Institute of Technology (IIT) Kanpur, India in 2017. He is currently a Sr. Research Scientist at Whoop, and his research interests lie at the intersection of ML, physiological signals, cardiovascular health monitoring (medicine) and wearables. Prior to joining Whoop, he was an Instructor (junior research faculty) at Harvard Medical School and Massachusetts General Hospital, USA, and a Data Scientist at IBM India. He has filed multiple patent disclosures and has published over 45 research papers in international peer-reviewed journals and conferences. He is also a reviewer for several journals of national and international repute.
Dr. Nishchal K. Verma is a Professor in the Department of Electrical Engineering at Indian Institute of Technology (IIT) Kanpur, India. Dr. Verma's research interest falls in Artificial Intelligence (AI) related theories and its practical applications to inter-disciplinary domains like machine learning, deep learning, computer vision, prognosis and health management, bioinformatics, cyber-physical systems, complex and highly non-linear systems modeling, clustering, and classifications, etc. He has published more than 250 research papers in peer-reviewed reputed conferences and journals along with 4 books (edited/ co-authored) in the field of AI. He has 20+ years of experience in the field of AI. He is currently serving as Associate Editor/ Editorial Board Member of various reputed journals and conferences. He has also developed several AI-related key technologies for The BOEING Company, USA.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Widerrufsbelehrung/ Muster-Widerrufsformular/
Allgemeine Geschäftsbedingungen und Kundeninformationen/ Datenschutzerklärung
Widerrufsrecht für Verbraucher
(Verbraucher ist jede natürliche Person, die ein Rechtsgeschäft zu Zwecken abschließt, die überwiegend weder ihrer gewerblichen noch ihrer selbstständigen beruflichen Tätigkeit zugerechnet werden können.)
Widerrufsbelehrung
Widerrufsrecht
Sie haben das Recht, binnen 14 Tagen ohne Angabe von Gründen diesen Vertrag zu widerrufen.
Die Widerrufsfr...
Soweit in der Artikelbeschreibung keine andere Frist angegeben ist, erfolgt die Lieferung der Ware innerhalb von 3-5 Werktagen nach Vertragsschluss, bei Vorauszahlung erst nach Eingang des vollständigen Kaufpreises und der Versandkosten. Alle Preise inkl. MwSt.
Bestellmenge | 2 bis 7 Werktage | 2 bis 6 Werktage |
---|---|---|
Erster Artikel | EUR 0.00 | EUR 3.99 |
Die Versandzeiten werden von den Verkäuferinnen und Verkäufern festgelegt. Sie variieren je nach Versanddienstleister und Standort. Sendungen, die den Zoll passieren, können Verzögerungen unterliegen. Eventuell anfallende Abgaben oder Gebühren sind von der Käuferin bzw. dem Käufer zu tragen. Die Verkäuferin bzw. der Verkäufer kann Sie bezüglich zusätzlicher Versandkosten kontaktieren, um einen möglichen Anstieg der Versandkosten für Ihre Artikel auszugleichen.