Implementing Spectral Methods for Partial Differential Equations : Algorithms for Scientists and Engineers

David A Kopriva

ISBN 10: 9048122600 ISBN 13: 9789048122608
Verlag: Springer Mai 2009, 2009
Neu Buch

Verkäufer AHA-BUCH GmbH, Einbeck, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 14. August 2006

Dieses Exemplar ist nicht mehr verfügbar. Hier sind die ähnlichsten Treffer für Implementing Spectral Methods for Partial Differential Equations : Algorithms for Scientists and Engineers von David A Kopriva.

Beschreibung

Beschreibung:

Neuware - This book offers a systematic and self-contained approach to solvepartial differential equations numerically using single and multidomain spectralmethods. It contains detailed algorithms in pseudocode for the applicationof spectral approximations to both one and two dimensional PDEsof mathematical physics describing potentials,transport, and wave propagation. David Kopriva, a well-known researcherin the field with extensive practical experience, shows how only a fewfundamental algorithms form the building blocks of any spectral code, evenfor problems with complex geometries. The book addresses computationaland applications scientists, as it emphasizes thepractical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectralapproximation and the basic algorithms, including FFT algorithms, Gaussquadrature algorithms, and how to approximate derivatives. The secondpart shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at theend of each chapter encourage the reader to experiment with thealgorithms. Bestandsnummer des Verkäufers 9789048122608

Diesen Artikel melden

Inhaltsangabe:

This book is aimed to be both a textbook for graduate students and a starting point for applicationsscientists. It is designedto show how to implementspectral methods to approximate the solutions of partial differential equations. It presents a syst- atic development of the fundamental algorithms needed to write spectral methods codes to solve basic problems of mathematical physics, including steady potentials, transport, and wave propagation. As such, it is meant to supplement, not replace, more general monographs on spectral methods like the recently updated "Spectral Methods: Fundamentals in Single Domains" and "Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics" by Canuto, Hussaini, Quarteroni and Zang, which provide detailed surveys of the variety of methods, their performance and theory. I was motivated by comments that I have heard over the years that spectral me- ods are "too hard to implement." I hope to dispel this view-or at least to remove the "too". Although it is true that a spectral code is harder to hack together than a s- ple ?nite difference code (at least a low order ?nite difference method on a square domain), I show that only a few fundamental algorithms for interpolation, differen- ation, FFT and quadrature-the subjects of basic numerical methods courses-form the building blocks of any spectral code, even for problems in complex geometries. Ipresentthealgorithmsnotonlytosolveproblemsin1D,but2Daswell,toshowthe ?exibility of spectral methods and to make as straightforward as possible the tr- sition from simple, exploratory programs that illustrate the behavior of the methods to application programs.

Über die Autorin bzw. den Autor:

David Kopriva is Professor of Mathematics at the Florida State University, where he has taught since 1985. He is an expert in the development, implementation and application of high order spectral multi-domain methods for time dependent problems. In 1986 he developed the first multi-domain spectral method for hyperbolic systems, which was applied to the Euler equations of gas dynamics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Implementing Spectral Methods for Partial ...
Verlag: Springer Mai 2009
Erscheinungsdatum: 2009
Einband: Buch
Zustand: Neu

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

David A. Kopriva
Verlag: Springer Netherland, 2010
ISBN 10: 9048184843 ISBN 13: 9789048184842
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Implementing Spectral Methods for Partial Differential Equations | Algorithms for Scientists and Engineers | David A. Kopriva | Taschenbuch | xviii | Englisch | 2010 | Springer Netherland | EAN 9789048184842 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 107142193

Verkäufer kontaktieren

Neu kaufen

EUR 141,30
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

David A. Kopriva
ISBN 10: 9048184843 ISBN 13: 9789048184842
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book offers a systematic and self-contained approach to solvepartial differential equations numerically using single and multidomain spectralmethods. It contains detailed algorithms in pseudocode for the applicationof spectral approximations to both one and two dimensional PDEsof mathematical physics describing potentials,transport, and wave propagation. David Kopriva, a well-known researcherin the field with extensive practical experience, shows how only a fewfundamental algorithms form the building blocks of any spectral code, evenfor problems with complex geometries. The book addresses computationaland applications scientists, as it emphasizes thepractical derivation and implementation of spectral methods over abstract mathematics. It is divided into two parts: First comes a primer on spectralapproximation and the basic algorithms, including FFT algorithms, Gaussquadrature algorithms, and how to approximate derivatives. The secondpart shows how to use those algorithms to solve steady and time dependent PDEs in one and two space dimensions. Exercises and questions at theend of each chapter encourage the reader to experiment with thealgorithms. Artikel-Nr. 9789048184842

Verkäufer kontaktieren

Neu kaufen

EUR 164,49
EUR 63,11 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb