Verkäufer
moluna, Greven, Deutschland
Verkäuferbewertung 4 von 5 Sternen
AbeBooks-Verkäufer seit 9. Juli 2020
Dieser Artikel ist ein Print on Demand Artikel und wird nach Ihrer Bestellung fuer Sie gedruckt. Serves as reference for professionals who would like to advance their research of energy efficient accelerators for machine learning algorithms like data mining, and to switch from the existing control-flow paradigm to energy efficient dataflow paradigm. Bestandsnummer des Verkäufers 635886136
Based on current literature and cutting-edge advances in the machine learning field, there are four algorithms whose usage in new application domains must be explored: neural networks, rule induction algorithms, tree-based algorithms, and density-based algorithms. A number of machine learning related algorithms have been derived from these four algorithms. Consequently, they represent excellent underlying methods for extracting hidden knowledge from unstructured data, as essential data mining tasks. Implementation of Machine Learning Algorithms Using Control-Flow and Dataflow Paradigms presents widely used data-mining algorithms and explains their advantages and disadvantages, their mathematical treatment, applications, energy efficient implementations, and more. It presents research of energy efficient accelerators for machine learning algorithms. Covering topics such as control-flow implementation, approximate computing, and decision tree algorithms, this book is an essential resource for computer scientists, engineers, students and educators of higher education, researchers, and academicians.
Über die Autorin bzw. den Autor:
Veljko Milutinovi?, Indiana University, Bloomington, USA
Nenad Mitic, University of Belgrade, Serbia
Aleksandar Kartelj, University of Belgrade, Serbia
Miloš Kotlar, University of Belgrade, Serbia
Titel: Implementation of Machine Learning ...
Verlag: Engineering Science Reference
Erscheinungsdatum: 2022
Einband: Hardcover
Zustand: New
Anbieter: Books From California, Simi Valley, CA, USA
paperback. Zustand: Fine. Artikel-Nr. mon0003971605
Anzahl: 1 verfügbar