The Hardy Space of a Slit Domain

Alexandru Aleman

ISBN 10: 3034600976 ISBN 13: 9783034600972
Verlag: Birkhäuser Basel, Birkhäuser Aug 2009, 2009
Neu Taschenbuch

Verkäufer buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 23. Januar 2017


Beschreibung

Beschreibung:

This item is printed on demand - Print on Demand Titel. Neuware -If H is a Hilbert space and T : H H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M M Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M .Springer Nature c/o IBS, Benzstrasse 21, 48619 Heek 144 pp. Englisch. Bestandsnummer des Verkäufers 9783034600972

Diesen Artikel melden

Inhaltsangabe:

This book examines Hardy spaces of slit domains and offers several descriptions of the invariant subspaces of the operator multiplication by z. It also discusses and characterizes the nearly invariant subspaces of these Hardy spaces.

Críticas:

From the reviews:

“This memoir is concerned with the description of the shift-invariant subspaces of a Hardy space on a slit domain ... . this brief monograph represents an interesting and valuable contribution to the literature on the subject of shift-invariant subspaces. It should be helpful for researchers and advanced graduate students specializing in the field.” (Dragan Vukotić, Mathematical Reviews, Issue 2011 m)

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: The Hardy Space of a Slit Domain
Verlag: Birkhäuser Basel, Birkhäuser Aug 2009
Erscheinungsdatum: 2009
Einband: Taschenbuch
Zustand: Neu

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Alexandru Aleman, William T. Ross, Nathan S. Feldman
Verlag: Birkhäuser Basel, 2009
ISBN 10: 3034600976 ISBN 13: 9783034600972
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 5183431/12

Verkäufer kontaktieren

Gebraucht kaufen

EUR 42,78
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Alexandru Aleman
Verlag: Birkhäuser Basel, 2009
ISBN 10: 3034600976 ISBN 13: 9783034600972
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - If H is a Hilbert space and T : H H is a continous linear operator, a natural question to ask is: What are the closed subspaces M of H for which T M M Of course the famous invariant subspace problem asks whether or not T has any non-trivial invariant subspaces. This monograph is part of a long line of study of the invariant subspaces of the operator T = M (multiplication by the independent variable z, i. e. , M f = zf )on a z z Hilbert space of analytic functions on a bounded domain G in C. The characterization of these M -invariant subspaces is particularly interesting since it entails both the properties z of the functions inside the domain G, their zero sets for example, as well as the behavior of the functions near the boundary of G. The operator M is not only interesting in its z own right but often serves as a model operator for certain classes of linear operators. By this we mean that given an operator T on H with certain properties (certain subnormal operators or two-isometric operators with the right spectral properties, etc. ), there is a Hilbert space of analytic functions on a domain G for which T is unitarity equivalent to M . Artikel-Nr. 9783034600972

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb