Inhaltsangabe
This book presents a complete proof of Connes' Index Theorem generalized to foliated spaces, including coverage of new developments and applications.
Über die Autorinnen und Autoren
Calvin C. Moore received his Ph.D. from Harvard in 1960 under George Mackey in topological groups and their representations. His research interests have extended over time to include ergodic theory, operator algebras, and applications of these to number theory, algebra, and geometry. He spent from 1960–61 as Postdoc at the University of Chicago and has been on UC Berkeley Mathematics faculty since 1961. He was co-founder (with S. S. Chern and I. M. Singer) of the Mathematical Sciences Research Institute, and has held various administrative posts within the University of California. He is a Fellow of the American Association for the Advancement of Sciences and the American Academy of Arts and Sciences.
Claude L. Schochet received his Ph.D. at the University of Chicago under J. P. May, in algebraic topology. His research interests have extended to include operator algebras, foliated spaces, K-theory and non-commutative topology. He taught at Aarhus University (Denmark), Hebrew University (Jerusalem), Indiana University, and has been at WSU since 1976. Since then, he has spent his year long sabbatical leaves at StonyBrook, UCLA, MSRI, U. Maryland, Technion (Haifa, Israel) and has made shorter visits to many other institutions, including Hautes Etudes Sci., University of Copenhagen, and University of California, Berkeley. He has co-authored an AMS Memoir, edited volumes and published many articles. He is a member of the American Mathematical Society, London Mathematical Society, European Mathematical Society, and Israel Mathematics Union.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.