Geometric Algorithms and Combinatorial Optimization

Martin Grötschel (u. a.)

ISBN 10: 3642782426 ISBN 13: 9783642782428
Verlag: Springer, 2011
Neu Taschenbuch

Verkäufer preigu, Osnabrück, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 5. August 2024


Beschreibung

Beschreibung:

Geometric Algorithms and Combinatorial Optimization | Martin Grötschel (u. a.) | Taschenbuch | XII | Englisch | 2011 | Springer | EAN 9783642782428 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 106366849

Diesen Artikel melden

Inhaltsangabe:

This book develops geometric techniques for proving the polynomial time solvability of problems in convexity theory, geometry, and, in particular, combinatorial optimization. The book is a continuation and extension of previous research of the authors for which they received the Fulkerson prize, awarded by the Mathematical Programming Society and the American Mathematical Society. To quote from a review: "This book ... is doubtless one of the outstanding books in discrete mathematics at all." (Journal of Information Proceedings and Cybernetics).

Reseña del editor: Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Geometric Algorithms and Combinatorial ...
Verlag: Springer
Erscheinungsdatum: 2011
Einband: Taschenbuch
Zustand: Neu
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Martin Grötschel
ISBN 10: 3642782426 ISBN 13: 9783642782428
Neu Taschenbuch Erstausgabe

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 380 pp. Englisch. Artikel-Nr. 9783642782428

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Martin Grötschel
ISBN 10: 3642782426 ISBN 13: 9783642782428
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Since the publication of the first edition of our book, geometric algorithms and combinatorial optimization have kept growing at the same fast pace as before. Nevertheless, we do not feel that the ongoing research has made this book outdated. Rather, it seems that many of the new results build on the models, algorithms, and theorems presented here. For instance, the celebrated Dyer-Frieze-Kannan algorithm for approximating the volume of a convex body is based on the oracle model of convex bodies and uses the ellipsoid method as a preprocessing technique. The polynomial time equivalence of optimization, separation, and membership has become a commonly employed tool in the study of the complexity of combinatorial optimization problems and in the newly developing field of computational convexity. Implementations of the basis reduction algorithm can be found in various computer algebra software systems. On the other hand, several of the open problems discussed in the first edition are still unsolved. For example, there are still no combinatorial polynomial time algorithms known for minimizing a submodular function or finding a maximum clique in a perfect graph. Moreover, despite the success of the interior point methods for the solution of explicitly given linear programs there is still no method known that solves implicitly given linear programs, such as those described in this book, and that is both practically and theoretically efficient. In particular, it is not known how to adapt interior point methods to such linear programs. Artikel-Nr. 9783642782428

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 63,25 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Martin Grötschel
Verlag: Springer, 2011
ISBN 10: 3642782426 ISBN 13: 9783642782428
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2nd edition. 374 pages. 9.61x0.87x6.69 inches. In Stock. Artikel-Nr. x-3642782426

Verkäufer kontaktieren

Neu kaufen

EUR 220,38
EUR 14,28 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb