Generative Adversarial Learning: Architectures and Applications (Intelligent Systems Reference Library, 217)

ISBN 10: 3030913899 ISBN 13: 9783030913892
Verlag: Springer, 2022
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783030913892_new

Diesen Artikel melden

Inhaltsangabe:

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.


Von der hinteren Coverseite:

This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs’ theoretical developments and their applications.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Generative Adversarial Learning: ...
Verlag: Springer
Erscheinungsdatum: 2022
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030913899 ISBN 13: 9783030913892
Neu Hardcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-277344

Verkäufer kontaktieren

Neu kaufen

EUR 127,23
Versand gratis
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Verlag: Springer, 2022
ISBN 10: 3030913899 ISBN 13: 9783030913892
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 402363557

Verkäufer kontaktieren

Neu kaufen

EUR 152,88
EUR 7,40 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Roozbeh Razavi-Far
ISBN 10: 3030913899 ISBN 13: 9783030913892
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a collection of recent research works addressing theoretical issues on improving the learning process and the generalization of GANs as well as state-of-the-art applications of GANs to various domains of real life. Adversarial learning fascinates the attention of machine learning communities across the world in recent years. Generative adversarial networks (GANs), as the main method of adversarial learning, achieve great success and popularity by exploiting a minimax learning concept, in which two networks compete with each other during the learning process. Their key capability is to generate new data and replicate available data distributions, which are needed in many practical applications, particularly in computer vision and signal processing. The book is intended for academics, practitioners, and research students in artificial intelligence looking to stay up to date with the latest advancements on GANs' theoretical developments and their applications. Artikel-Nr. 9783030913892

Verkäufer kontaktieren

Neu kaufen

EUR 192,59
EUR 63,62 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb