Inhaltsangabe:
This book represents a first course in the theory of metric, normed, and Hilbert spaces, and is intended (i) for mathematicians, physicists, and others who may need only one course that provides the elements of that subject, and (ii) as a foundation for more advanced courses in analysis, topology, and geometry for pure mathematicians. Prerequisites is a knowledge of the basic ideas of limits and continuity.
Reseña del editor:
A complete course on metric, normed, and Hilbert spaces, including many results and exercises seldom found in texts on analysis at this level. The author covers an unusually wide range of material in a clear and concise format, including elementary real analysis, Lebesgue integration on R, and an introduction to functional analysis. The book begins with a fast-paced course on real analysis, followed by an introduction to the Lebesgue integral. This provides a reference for later chapters as well as a preparation for students with only the typical sequence of undergraduate calculus courses as prerequisites. Other features include a chapter introducing functional analysis, the Hahn-Banach theorem and duality, separation theorems, the Baire Category Theorem, the Open Mapping Theorem and their consequences, and unusual applications. Of special interest are the 750 exercises, many with guidelines for their solutions, applications and extensions of the main propositions and theorems, pointers to new branches of the subject, and difficult challenges for the very best students.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.