Verkäufer
Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 25. März 2015
In. Bestandsnummer des Verkäufers ria9783960672036_new
Biometrics refers to the authentication techniques that depend on measurable physical characteristics and behavioural characteristics to identify an individual. The biometric systems consist of different stages such as image acquisition, preprocessing, feature extraction and matching. Biometric techniques are widely used in the security world. The various types of biometric systems use different techniques for the preprocessing, feature extraction and classifiers.The dorsum of the hand is known as the finger back surface. It is highly used for personal authentication and has not yet attracted the attention of convenient researchers. It is mostly used due to contact free image acquisition. It is reported that the skin pattern on the finger-knuckle is extremely rich in texture due to skin folds and creases, and hence, can be considered as a biometric identifier. Furthermore, advantages of using Finger Knuckle Print (FKP) include rich in texture features, easily accessible, contact-less image acquisition, invariant to emotions and other behavioral aspects such as tiredness, stable features and acceptability in the society. As a result of that, there is less known use of finger knuckle pattern in commercial or civilian applications. The local features of an enhanced palmprint image are extracted using Fast Discrete Orthonormal Stockwell Transform (FDOST). The Fourier transform of an image is obtained by increasing the scale of FDOST to infinity. The Fourier transform coefficients extracted from the palmprint image and FKP image are considered as the global information. The local and global information are physically linked by means of the framework of time frequency analysis. The global feature is exploited to refine the arrangement of FKP images in matching. The proposed schemes make use of the local and global features to verify finger knuckle-print images. The weighted average of the local and global matching distances is taken as the final matching distance of two
Über die Autorin bzw. den Autor: Dr. N.B. Mahesh Kumar is currently working as Assistant Professor (Sr.G) in Department of Computer Science and Engineering, Bannari Amman Institute of Technology, Erode, Tamil Nadu. He completed his B. Tech (IT), M.E. (CSE) and Ph.D in Anna University, Tamilnadu, India. His areas of research interest include Image Processing and Data Mining. He published 8 International Journals, 7 International Conferences, 8 National Conferences and 1 Monograph. I have 10 years teaching experience.
Titel: Finger Knuckle-Print Authentication Using ...
Verlag: Anchor Academic Publishing
Erscheinungsdatum: 2017
Einband: Softcover
Zustand: New
Anbieter: Buchpark, Trebbin, Deutschland
Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 48 | Sprache: Englisch | Produktart: Bücher | Biometrics refers to the authentication techniques that depend on measurable physical characteristics and behavioural characteristics to identify an individual. The biometric systems consist of different stages such as image acquisition, preprocessing, feature extraction and matching. Biometric techniques are widely used in the security world. The various types of biometric systems use different techniques for the preprocessing, feature extraction and classifiers.The dorsum of the hand is known as the finger back surface. It is highly used for personal authentication and has not yet attracted the attention of convenient researchers. It is mostly used due to contact free image acquisition. It is reported that the skin pattern on the finger-knuckle is extremely rich in texture due to skin folds and creases, and hence, can be considered as a biometric identifier. Furthermore, advantages of using Finger Knuckle Print (FKP) include rich in texture features, easily accessible, contact-less image acquisition, invariant to emotions and other behavioral aspects such as tiredness, stable features and acceptability in the society. As a result of that, there is less known use of finger knuckle pattern in commercial or civilian applications. The local features of an enhanced palmprint image are extracted using Fast Discrete Orthonormal Stockwell Transform (FDOST). The Fourier transform of an image is obtained by increasing the scale of FDOST to infinity. The Fourier transform coefficients extracted from the palmprint image and FKP image are considered as the global information. The local and global information are physically linked by means of the framework of time frequency analysis. The global feature is exploited to refine the arrangement of FKP images in matching. The proposed schemes make use of the local and global features to verify finger knuckle-print images. The weighted average of the local and global matching distances is taken as the final matching distance of two FKP images. The investigational results indicate that the proposed works outperform the existing works. Artikel-Nr. 30659679/2
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Biometrics refers to the authentication techniques that depend on measurable physical characteristics and behavioural characteristics to identify an individual. The biometric systems consist of different stages such as image acquisition, preprocessing, feature extraction and matching. Biometric techniques are widely used in the security world. The various types of biometric systems use different techniques for the preprocessing, feature extraction and classifiers.The dorsum of the hand is known as the finger back surface. It is highly used for personal authentication and has not yet attracted the attention of convenient researchers. It is mostly used due to contact free image acquisition. It is reported that the skin pattern on the finger-knuckle is extremely rich in texture due to skin folds and creases, and hence, can be considered as a biometric identifier. Furthermore, advantages of using Finger Knuckle Print (FKP) include rich in texture features, easily accessible, contact-less image acquisition, invariant to emotions and other behavioral aspects such as tiredness, stable features and acceptability in the society. As a result of that, there is less known use of finger knuckle pattern in commercial or civilian applications.The local features of an enhanced palmprint image are extracted using Fast Discrete Orthonormal Stockwell Transform (FDOST). The Fourier transform of an image is obtained by increasing the scale of FDOST to infinity. The Fourier transform coefficients extracted from the palmprint image and FKP image are considered as the global information. The local and global information are physically linked by means of the framework of time frequency analysis. The global feature is exploited to refine the arrangement of FKP images in matching. The proposed schemes make use of the local and global features to verify finger knuckle-print images. The weighted average of the local and global matching distances is taken as the final matching distance of two FKP images. The investigational results indicate that the proposed works outperform the existing works.Diplomica Verlag, Hermannstal 119k, 22119 Hamburg 48 pp. Englisch. Artikel-Nr. 9783960672036
Anzahl: 2 verfügbar
Anbieter: preigu, Osnabrück, Deutschland
Taschenbuch. Zustand: Neu. Finger Knuckle-Print Authentication Using Fast Discrete Orthonormal Stockwell Transform | N. B. Mahesh Kumar (u. a.) | Taschenbuch | 48 S. | Englisch | 2017 | Anchor Academic Publishing | EAN 9783960672036 | Verantwortliche Person für die EU: Dryas Verlag, ein Imprint der Bedey und Thoms Media GmbH, Hermannstal 119k, 22119 Hamburg, kontakt[at]dryas[dot]de | Anbieter: preigu. Artikel-Nr. 110673895
Anzahl: 5 verfügbar