Extracting Knowledge From Time Series | An Introduction to Nonlinear Empirical Modeling

Dmitry A. Smirnov (u. a.)

ISBN 10: 3642264824 ISBN 13: 9783642264825
Verlag: Springer-Verlag GmbH, 2012
Neu Taschenbuch

Verkäufer preigu, Osnabrück, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 5. August 2024


Beschreibung

Beschreibung:

Extracting Knowledge From Time Series | An Introduction to Nonlinear Empirical Modeling | Dmitry A. Smirnov (u. a.) | Taschenbuch | xxii | Englisch | 2012 | Springer-Verlag GmbH | EAN 9783642264825 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 106178953

Diesen Artikel melden

Inhaltsangabe:

Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less speci?c approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II re?ects our professional interests as physicists who spent much time to investigations in the ?eld of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as “system identi?cation” in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s- ?ciently low order can exhibit non-trivial solutions that promise suf?ciently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random in?uence (noise) or by a very high order of equations.

Von der hinteren Coverseite: This book addresses the fundamental question of how to construct mathematical models for the evolution of dynamical systems from experimentally-obtained time series. It places emphasis on chaotic signals and nonlinear modeling and discusses different approaches to the forecast of future system evolution. In particular, it teaches readers how to construct difference and differential model equations depending on the amount of a priori information that is available on the system in addition to the experimental data sets. This book will benefit graduate students and researchers from all natural sciences who seek a self-contained and thorough introduction to this subject.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Extracting Knowledge From Time Series | An ...
Verlag: Springer-Verlag GmbH
Erscheinungsdatum: 2012
Einband: Taschenbuch
Zustand: Neu

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Dmitry A. Smirnov
ISBN 10: 3642264824 ISBN 13: 9783642264825
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Mathematical modelling is ubiquitous. Almost every book in exact science touches on mathematical models of a certain class of phenomena, on more or less speci c approaches to construction and investigation of models, on their applications, etc. As many textbooks with similar titles, Part I of our book is devoted to general qu- tions of modelling. Part II re ects our professional interests as physicists who spent much time to investigations in the eld of non-linear dynamics and mathematical modelling from discrete sequences of experimental measurements (time series). The latter direction of research is known for a long time as 'system identi cation' in the framework of mathematical statistics and automatic control theory. It has its roots in the problem of approximating experimental data points on a plane with a smooth curve. Currently, researchers aim at the description of complex behaviour (irregular, chaotic, non-stationary and noise-corrupted signals which are typical of real-world objects and phenomena) with relatively simple non-linear differential or difference model equations rather than with cumbersome explicit functions of time. In the second half of the twentieth century, it has become clear that such equations of a s- ciently low order can exhibit non-trivial solutions that promise suf ciently simple modelling of complex processes; according to the concepts of non-linear dynamics, chaotic regimes can be demonstrated already by a third-order non-linear ordinary differential equation, while complex behaviour in a linear model can be induced either by random in uence (noise) or by a very high order of equations. Artikel-Nr. 9783642264825

Verkäufer kontaktieren

Neu kaufen

EUR 53,49
Versand: EUR 63,26
Von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Boris P. Bezruchko/ Dmitry A. Smirnov
Verlag: Springer, 2012
ISBN 10: 3642264824 ISBN 13: 9783642264825
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2010 edition. 432 pages. 9.00x5.90x1.20 inches. In Stock. Artikel-Nr. x-3642264824

Verkäufer kontaktieren

Neu kaufen

EUR 81,44
Versand: EUR 14,22
Von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb