Verkäufer
preigu, Osnabrück, Deutschland
Verkäuferbewertung 5 von 5 Sternen
AbeBooks-Verkäufer seit 5. August 2024
Exploring Optimization Algorithms in Machine Learning: From Theory to Practice | Kinky | Taschenbuch | Englisch | 2024 | Mia Graf | EAN 9783384275837 | Verantwortliche Person für die EU: tredition GmbH, Heinz-Beusen-Stieg 5, 22926 Ahrensburg, support[at]tredition[dot]com | Anbieter: preigu. Bestandsnummer des Verkäufers 129556350
Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics. In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems. Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond.
Titel: Exploring Optimization Algorithms in Machine...
Verlag: Mia Graf
Erscheinungsdatum: 2024
Einband: Taschenbuch
Zustand: Neu
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Optimization algorithms in machine learning bridge theoretical foundations with practical applications, crucial for refining model performance. Techniques like gradient descent, stochastic gradient descent (SGD), and advanced methods such as Adam and RMSprop optimize model parameters to minimize error and enhance accuracy. Theoretical understanding encompasses concepts like convexity, convergence criteria, and adaptive learning rates, essential for algorithm selection based on dataset characteristics.In practice, implementing these algorithms involves tuning hyperparameters and assessing trade-offs between computational efficiency and model effectiveness across diverse datasets. Recent innovations, including meta-heuristic algorithms like genetic algorithms, further expand optimization capabilities for complex, non-linear problems.Mastering optimization algorithms empowers practitioners to navigate challenges in model training and deployment effectively, ensuring robust performance in real-world applications. This comprehensive understanding supports innovation in machine learning, driving advancements in various fields from healthcare to finance and beyond.tredition, Heinz-Beusen-Stieg 5, 22926 Ahrensburg 340 pp. Englisch. Artikel-Nr. 9783384275837
Anzahl: 2 verfügbar