Between 1994 and 1999, I had the pleasure of lecturing Special and General Relativity in the Facultad de Ciencias Exactas y Naturales of the Universidad de Buenos Aires. These lectures were targeted to undergraduate and graduate students of Physics. However, it is increasingly apparent that interest in Relativity extends beyond these academic circles. Because of this reason, this book intends to become useful to students of related disciplines and to other readers interested in Einstein’s work, who will be able to incorporate entirely the fundamental ideas of Relativity starting from the very basic concepts of Physics. To understand the Theory of Relativity it is necessary to give up our intuitive notions of space and time, i. e. , the notions used in our daily relation with the world. These classical notions of space and time are also the foundations of Newtonian mechanics, which dominated Physics for over two centuries until they clashed with Maxwell’s electromagnetism. Classical physics assumed that space is immutable and its geometry obeys the Euclidean postulates. Furthermore, distances and time intervals are believed invariant, i. e. , independent of the state of motion. Both preconceptions about the nature of space and time rely firmly on our daily experience, in such a way that the classical notions are imprinted in our thought with the status of “true.
Einstein's Space-Time: An Introduction to Special and General Relativity is a textbook addressed to students in physics and other people interested in Relativity and a history of physics. The book contains a complete account of Special Relativity that begins with the historical analysis of the reasons that led to a change in our manner of regarding the space and time. The first chapters are aimed to afford a deep understanding of the relativistic spacetime and its consequences for Dynamics. The chapter about covariant formulation includes among its topics the concepts of volume and hypersurfaces in manifolds, energy-momentum tensor of a fluid, and prepares the language for General Relativity. The last two chapters are devoted to an introduction of General Relativity and Cosmology in a modern approach connected with the latest discoveries in these areas.