Domain Adaptation for Visual Understanding

-

ISBN 10: 3030306704 ISBN 13: 9783030306700
Verlag: Springer, 2020
Gebraucht hardcover

Verkäufer AwesomeBooks, Wallingford, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 28. November 2006


Beschreibung

Beschreibung:

Domain Adaptation for Visual Understanding This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Bestandsnummer des Verkäufers 7719-9783030306700

Diesen Artikel melden

Inhaltsangabe:

This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition.

Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods.

This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.

Über die Autorin bzw. den Autor:

Dr. Richa Singh is a Professor at Indraprastha Institute of Information Technology, Delhi, India. Dr. Mayank Vatsa is a Professor at the same institution. Dr. Vishal M. Patel is an Assistant Professor in the Department of Electrical and Computer Engineering at Johns Hopkins University, Baltimore, MD, USA. Dr. Nalini Ratha is a Research Staff Member at the IBM Thomas J. Watson Research Center, Yorktown Heights, NY, USA.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Domain Adaptation for Visual Understanding
Verlag: Springer
Erscheinungsdatum: 2020
Einband: hardcover
Zustand: Very Good

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Richa Singh
ISBN 10: 3030306704 ISBN 13: 9783030306700
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition.Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods.This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding. Artikel-Nr. 9783030306700

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
EUR 62,04 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Richa Singh
ISBN 10: 3030306704 ISBN 13: 9783030306700
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This unique volume reviews the latest advances in domain adaptation in the training of machine learning algorithms for visual understanding, offering valuable insights from an international selection of experts in the field. The text presents a diverse selection of novel techniques, covering applications of object recognition, face recognition, and action and event recognition.Topics and features: reviews the domain adaptation-based machine learning algorithms available for visual understanding, and provides a deep metric learning approach; introduces a novel unsupervised method for image-to-image translation, and a video segment retrieval model that utilizes ensemble learning; proposes a unique way to determine which dataset is most useful in the base training, in order to improve the transferability of deep neural networks; describes a quantitative method for estimating the discrepancy between the source and target data to enhance image classification performance; presentsa technique for multi-modal fusion that enhances facial action recognition, and a framework for intuition learning in domain adaptation; examines an original interpolation-based approach to address the issue of tracking model degradation in correlation filter-based methods.This authoritative work will serve as an invaluable reference for researchers and practitioners interested in machine learning-based visual recognition and understanding.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 156 pp. Englisch. Artikel-Nr. 9783030306700

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Singh, Richa (Edited by)/ Vatsa, Mayank (Edited by)/ Patel, Vishal M. (Edited by)/ Ratha, Nalini (Edited by)
Verlag: Springer, 2020
ISBN 10: 3030306704 ISBN 13: 9783030306700
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 156 pages. 9.25x6.10x0.59 inches. In Stock. Artikel-Nr. x-3030306704

Verkäufer kontaktieren

Neu kaufen

EUR 150,01
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb