Discrepancy of Signed Measures and Polynomial Approximation (Springer Monographs in Mathematics)

Andrievskii, Vladimir V. V.; Blatt, Hans-Peter

ISBN 10: 1441931465 ISBN 13: 9781441931467
Verlag: Springer, 2010
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9781441931467_new

Diesen Artikel melden

Inhaltsangabe:

Analysis is the branch of mathematics concerned with limits of functions, sequences and series. Potential theory is the study of potential functions. This book is an authoritative and up-to-date introduction to both fields.

Von der hinteren Coverseite: The book is an authoritative and up-to-date introduction to the field of Analysis and Potential Theory dealing with the distribution zeros of classical systems of polynomials such as orthogonal polynomials, Chebyshev, Fekete and Bieberbach polynomials, best or near-best approximating polynomials on compact sets and on the real line. The main feature of the book is the combination of potential theory with conformal invariants, such as module of a family of curves and harmonic measure, to derive discrepancy estimates for signed measures if bounds for their logarithmic potentials or energy integrals are known a priori. Classical results of Jentzsch and Szegö for the zero distribution of partial sums of power series can be recovered and sharpened by new discrepany estimates, as well as distribution results of Erdös and Turn for zeros of polynomials bounded on compact sets in the complex plane.
Vladimir V. Andrievskii is Assistant Professor of Mathematics at Kent State University. Hans-Peter Blatt is Full Professor of Mathematics at Katholische Universität Eichstätt.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Discrepancy of Signed Measures and ...
Verlag: Springer
Erscheinungsdatum: 2010
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Vladimir V. Andrievskii (u. a.)
Verlag: Springer, 2010
ISBN 10: 1441931465 ISBN 13: 9781441931467
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Discrepancy of Signed Measures and Polynomial Approximation | Vladimir V. Andrievskii (u. a.) | Taschenbuch | xiv | Englisch | 2010 | Springer | EAN 9781441931467 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 107174086

Verkäufer kontaktieren

Neu kaufen

EUR 141,30
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Vladimir V. Andrievskii
Verlag: Springer, Humana, 2010
ISBN 10: 1441931465 ISBN 13: 9781441931467
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In many situations in approximation theory the distribution of points in a given set is of interest. For example, the suitable choiee of interpolation points is essential to obtain satisfactory estimates for the convergence of interpolating polynomials. Zeros of orthogonal polynomials are the nodes for Gauss quadrat ure formulas. Alternation points of the error curve char acterize the best approximating polynomials. In classieal complex analysis an interesting feature is the location of zeros of approximants to an analytie function. In 1918 R. Jentzsch [91] showed that every point of the circle of convergence of apower series is a limit point of zeros of its partial sums. This theorem of Jentzsch was sharpened by Szegö [170] in 1923. He proved that for apower series with finite radius of convergence there is an infinite sequence of partial sums, the zeros of whieh are 'equidistributed' with respect to the angular measure. In 1929 Bernstein [27] stated the following theorem. Let f be a positive continuous function on [-1, 1]; if almost all zeros of the polynomials of best 2 approximation to f (in a weighted L -norm) are outside of an open ellipse c with foci at -1 and 1, then f has a continuous extension that is analytic in c. Artikel-Nr. 9781441931467

Verkäufer kontaktieren

Neu kaufen

EUR 166,62
EUR 63,43 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb