Direct Likelihood Approximations for Generalized Linear Mixed Models: An Adaptive Approach

Ahmad, Basheer

ISBN 10: 3639286936 ISBN 13: 9783639286939
Verlag: VDM Verlag Dr. Müller, 2010
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783639286939_new

Diesen Artikel melden

Inhaltsangabe:

It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.

Reseña del editor: It is a standard approach to consider the maximum likelihood estimation procedure for the estimation of parameters in statistical modelling. The sample likelihood function has a closed form representation only if the two densities in the integrand are conjugate to each other. In case of any non- conjugate pair, no closed form representation exists. In such situations, we need to approximate the integral by making use of some numerical techniques. A first or second order Laplace approximation or the (adaptive) Gauss-Hermite quadrature method can be applied in order to get an approximative objective function. The resulting approximation of the likelihood function still needs to be numerically maximized with respect to all unknown parameters. For such a numerical maximization, all required derivatives are provided in the scope of this work. We explore the use of the (adaptive) Gauss-Hermite quadrature for Generalized Linear Mixed Models, when the conditional density of the response given the random effects is a member of the linear exponential family and the random effects are Gaussian.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Direct Likelihood Approximations for ...
Verlag: VDM Verlag Dr. Müller
Erscheinungsdatum: 2010
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Basheer Ahmad
Verlag: VDM Verlag Dr. Müller, 2010
ISBN 10: 3639286936 ISBN 13: 9783639286939
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Direct Likelihood Approximations for Generalized Linear Mixed Models | An Adaptive Approach | Basheer Ahmad | Taschenbuch | Einband - flex.(Paperback) | Englisch | 2010 | VDM Verlag Dr. Müller | EAN 9783639286939 | Verantwortliche Person für die EU: OmniScriptum GmbH & Co. KG, Bahnhofstr. 28, 66111 Saarbrücken, info[at]akademikerverlag[dot]de | Anbieter: preigu. Artikel-Nr. 107312913

Verkäufer kontaktieren

Neu kaufen

EUR 43,35
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb