Deep Learning for Computational Problems in Hardware Security: Modeling Attacks on Strong Physically Unclonable Function Circuits

Santikellur, Pranesh, Chakraborty, Rajat Subhra

ISBN 10: 9811940193 ISBN 13: 9789811940194
Verlag: Springer, 2023
Neu Softcover

Verkäufer Kennys Bookstore, Olney, MD, USA Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 9. Oktober 2009


Beschreibung

Beschreibung:

2023. Paperback. . . . . . Books ship from the US and Ireland. Bestandsnummer des Verkäufers V9789811940194

Diesen Artikel melden

Inhaltsangabe:

The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent "modeling attacks" on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.

Über die Autorin bzw. den Autor:

Pranesh Santikellur is a Ph.D. student and a Senior Research Fellow in the Department of Computer Science and Engineering at the Indian Institute of Technology, Kharagpur. He received his B.E. degree in Electronics & Communication Engineering from Visvesvaraya Technological University, Belgaum, India, in 2010. He has a total of 6 years of industry experience at Horner Engineering India Pvt. Ltd. and Processor Systems. His primary research interest lies in hardware security, deep learning, and programmable logic controller security. He is an IEEE student member.

Rajat Subhra Chakraborty is an Associate Professor in the Department of Computer Science & Engineering of the Indian Institute of Technology, Kharagpur, India. He has professional experience working in National Semiconductor and Advanced Micro Devices (AMD). His research interest lies in the areas of hardware security, VLSI design, digital watermarking, and digital image forensics, in which he has published 4 books and over 100 papers in international journals and conferences of repute. He holds 2 granted U.S. patents. His publications have received over 3600 citations to date. Dr. Chakraborty has a Ph.D. in Computer Engineering from Case Western Reserve University, USA, and is a senior member of IEEE and ACM.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Deep Learning for Computational Problems in ...
Verlag: Springer
Erscheinungsdatum: 2023
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Santikellur, Pranesh; Chakraborty, Rajat Subhra
Verlag: Springer, 2023
ISBN 10: 9811940193 ISBN 13: 9789811940194
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811940194_new

Verkäufer kontaktieren

Neu kaufen

EUR 58,15
Währung umrechnen
Versand: EUR 13,77
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Rajat Subhra Chakraborty
ISBN 10: 9811940193 ISBN 13: 9789811940194
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent 'modeling attacks' on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book. Artikel-Nr. 9789811940194

Verkäufer kontaktieren

Neu kaufen

EUR 81,70
Währung umrechnen
Versand: EUR 60,83
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Rajat Subhra Chakraborty
ISBN 10: 9811940193 ISBN 13: 9789811940194
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -The book discusses a broad overview of traditional machine learning methods and state-of-the-art deep learning practices for hardware security applications, in particular the techniques of launching potent 'modeling attacks' on Physically Unclonable Function (PUF) circuits, which are promising hardware security primitives. The volume is self-contained and includes a comprehensive background on PUF circuits, and the necessary mathematical foundation of traditional and advanced machine learning techniques such as support vector machines, logistic regression, neural networks, and deep learning. This book can be used as a self-learning resource for researchers and practitioners of hardware security, and will also be suitable for graduate-level courses on hardware security and application of machine learning in hardware security. A stand-out feature of the book is the availability of reference software code and datasets to replicate the experiments described in the book.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 100 pp. Englisch. Artikel-Nr. 9789811940194

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Santikellur, Pranesh/ Chakraborty, Rajat Subhra
Verlag: Springer Nature, 2023
ISBN 10: 9811940193 ISBN 13: 9789811940194
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 97 pages. 9.25x6.10x0.21 inches. In Stock. Artikel-Nr. x-9811940193

Verkäufer kontaktieren

Neu kaufen

EUR 148,30
Währung umrechnen
Versand: EUR 28,73
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb