Data Science and Predictive Analytics: Biomedical and Health Applications using R (The Springer Series in Applied Machine Learning)

Dinov, Ivo D.

ISBN 10: 3031174828 ISBN 13: 9783031174827
Verlag: Springer, 2023
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783031174827_new

Diesen Artikel melden

Inhaltsangabe:

This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown notebooks. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.

Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analytics address specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices. 

This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic notebooks, extensive appendices, and additional materials.



Über die Autorin bzw. den Autor: Professor Ivo D. Dinov directs the Statistics Online Computational Resource (SOCR) at the University of Michigan and serves as associate director of the Michigan Institute for Data Science (MIDAS). He is an expert in mathematical modeling, statistical analysis, high-throughput computational processing, and scientific visualization of large, complex and heterogeneous datasets (Big Data). Dr. Dinov is developing, validating, and disseminating novel technology-enhanced pedagogical approaches for STEM education and active data science learning. His artificial intelligence and machine learning work involves compressive big data analytics, statistical obfuscation of sensitive data, complex time (kime) representation, model-based and model-free techniques for kimesurface analytics. Dr. Dinov is a member of the American Statistical Association, the American Mathematical Society, the American Physical Society, the American Association for the Advancement of Science, an honorary member ofthe Sigma Theta Tau International Society, and an elected member of the International Statistical Institute.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Data Science and Predictive Analytics: ...
Verlag: Springer
Erscheinungsdatum: 2023
Einband: Hardcover
Zustand: New
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Dinov, Ivo D.
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Very Good. Artikel-Nr. mon0003894485

Verkäufer kontaktieren

Gebraucht kaufen

EUR 46,05
EUR 4,25 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dinov, Ivo D.
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Gebraucht Hardcover

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

hardcover. Zustand: Fine. Artikel-Nr. mon0003840618

Verkäufer kontaktieren

Gebraucht kaufen

EUR 46,05
EUR 4,25 shipping
Versand innerhalb von USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dinov, Ivo D.
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 952 | Sprache: Englisch | Produktart: Bücher | Chapter 1 - Introduction.- Chapter 2: Basic Visualization and Exploratory Data Analytics.- Chapter 3: Linear Algebra, Matrix Computing and Regression Modeling.- Chapter 4: Linear and Nonlinear Dimensionality Reduction.- Chapter 5: Supervised Classification.- Chapter 6: Black Box Machine Learning Methods.- Chapter 7: Qualitative Learning Methods - Text Mining, Natural Language Processing, Apriori Association Rules Learning.- Chapter 8: Unsupervised Clustering.- Chapter 9: Model Performance Assessment, Validation, and Improvement.- Chapter 10: Specialized Machine Learning Topics.- Chapter 11: Variable Importance and Feature Selection.- Chapter 12: Big Longitudinal Data Analysis.- Chapter 13: Function Optimization.- Chapter 14: Deep Learning, Neural Networks. Artikel-Nr. 41473694/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 67,58
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dinov, Ivo D.
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 401022842

Verkäufer kontaktieren

Neu kaufen

EUR 92,76
EUR 7,43 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dinov, Ivo D.
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Neu Hardcover

Anbieter: Romtrade Corp., STERLING HEIGHTS, MI, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. This is a Brand-new US Edition. This Item may be shipped from US or any other country as we have multiple locations worldwide. Artikel-Nr. ABNR-27771

Verkäufer kontaktieren

Neu kaufen

EUR 96,00
Versand gratis
Versand innerhalb von USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ivo D. Dinov
ISBN 10: 3031174828 ISBN 13: 9783031174827
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown not Elektronisches Buch. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 952 pp. Englisch. Artikel-Nr. 9783031174827

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Ivo D. Dinov
ISBN 10: 3031174828 ISBN 13: 9783031174827
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This textbook integrates important mathematical foundations, efficient computational algorithms, applied statistical inference techniques, and cutting-edge machine learning approaches to address a wide range of crucial biomedical informatics, health analytics applications, and decision science challenges. Each concept in the book includes a rigorous symbolic formulation coupled with computational algorithms and complete end-to-end pipeline protocols implemented as functional R electronic markdown not Elektronisches Buch. These workflows support active learning and demonstrate comprehensive data manipulations, interactive visualizations, and sophisticated analytics. The content includes open problems, state-of-the-art scientific knowledge, ethical integration of heterogeneous scientific tools, and procedures for systematic validation and dissemination of reproducible research findings.Complementary to the enormous challenges related to handling, interrogating, and understanding massive amounts of complex structured and unstructured data, there are unique opportunities that come with access to a wealth of feature-rich, high-dimensional, and time-varying information. The topics covered in Data Science and Predictive Analyticsaddress specific knowledge gaps, resolve educational barriers, and mitigate workforce information-readiness and data science deficiencies. Specifically, it provides a transdisciplinary curriculum integrating core mathematical principles, modern computational methods, advanced data science techniques, model-based machine learning, model-free artificial intelligence, and innovative biomedical applications. The book's fourteen chapters start with an introduction and progressively build foundational skills from visualization to linear modeling, dimensionality reduction, supervised classification, black-box machine learning techniques, qualitative learning methods, unsupervised clustering, model performance assessment, feature selection strategies, longitudinal data analytics, optimization, neural networks, and deep learning. The second edition of the book includes additional learning-based strategies utilizing generative adversarial networks, transfer learning, and synthetic data generation, as well as eight complementary electronic appendices.This textbook is suitable for formal didactic instructor-guided course education, as well as for individual or team-supported self-learning. The material is presented at the upper-division and graduate-level college courses and covers applied and interdisciplinary mathematics, contemporary learning-based data science techniques, computational algorithm development, optimization theory, statistical computing, and biomedical sciences. The analytical techniques and predictive scientific methods described in the book may be useful to a wide range of readers, formal and informal learners, college instructors, researchers, and engineers throughout the academy, industry, government, regulatory, funding, and policy agencies. The supporting book website provides many examples, datasets, functional scripts, complete electronic not Elektronisches Buch, extensive appendices, and additional materials. Artikel-Nr. 9783031174827

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
EUR 67,86 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Dinov, Ivo D. (Author)
Verlag: Springer, 2023
ISBN 10: 3031174828 ISBN 13: 9783031174827
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 2nd edition. 952 pages. 9.25x6.10x2.28 inches. In Stock. Artikel-Nr. x-3031174828

Verkäufer kontaktieren

Neu kaufen

EUR 176,24
EUR 17,14 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb