Convex Integration Theory: Solutions to the h-principle in geometry and topology (Modern Birkhäuser Classics)

Spring, David

ISBN 10: 3034800592 ISBN 13: 9783034800594
Verlag: Birkhäuser, 2010
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In English. Bestandsnummer des Verkäufers ria9783034800594_new

Diesen Artikel melden

Inhaltsangabe:

§1. Historical Remarks Convex Integration theory, ?rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov’s thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi?cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di?erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi?cation of immersions, are provable by all three methods.

Über die Autorin bzw. den Autor: David Spring is a Professor of mathematics at the Glendon College in Toronto, Canada.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Convex Integration Theory: Solutions to the ...
Verlag: Birkhäuser
Erscheinungsdatum: 2010
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Spring, D.
Verlag: Basel, Birkhäuser., 1998
ISBN 10: 3034800592 ISBN 13: 9783034800594
Gebraucht Softcover

Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

VIII, 212 p. Softcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Reprint of the 1998 Edition. Cover partially bumped. Stamped. Modern Birkhäuser Classics. Sprache: Englisch. Artikel-Nr. 4775JB

Verkäufer kontaktieren

Gebraucht kaufen

EUR 11,00
EUR 30,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Spring, David
Verlag: Birkhäuser, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Gebraucht Softcover

Anbieter: Anybook.com, Lincoln, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Good. This is an ex-library book and may have the usual library/used-book markings inside.This book has soft covers. In good all round condition. Please note the Image in this listing is a stock photo and may not match the covers of the actual item,450grams, ISBN:9783034800594. Artikel-Nr. 5832913

Verkäufer kontaktieren

Gebraucht kaufen

EUR 39,14
EUR 15,30 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

David Spring
Verlag: Birkhäuser, 2010
ISBN 10: 3034800592 ISBN 13: 9783034800594
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Convex Integration Theory | Solutions to the h-principle in geometry and topology | David Spring | Taschenbuch | viii | Englisch | 2010 | Birkhäuser | EAN 9783034800594 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 128210102

Verkäufer kontaktieren

Neu kaufen

EUR 49,80
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

David Spring
ISBN 10: 3034800592 ISBN 13: 9783034800594
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - 1. Historical Remarks Convex Integration theory, rst introduced by M. Gromov [17], is one of three general methods in immersion-theoretic topology for solving a broad range of problems in geometry and topology. The other methods are: (i) Removal of Singularities, introduced by M. Gromov and Y. Eliashberg [8]; (ii) the covering homotopy method which, following M. Gromov's thesis [16], is also referred to as the method of sheaves. The covering homotopy method is due originally to S. Smale [36] who proved a crucial covering homotopy result in order to solve the classi cation problem for immersions of spheres in Euclidean space. These general methods are not linearly related in the sense that succ- sive methods subsumed the previous methods. Each method has its own distinct foundation, based on an independent geometrical or analytical insight. Con- quently, each method has a range of applications to problems in topology that are best suited to its particular insight. For example, a distinguishing feature of ConvexIntegrationtheoryisthatitappliestosolveclosed relationsinjetspaces, including certain general classes of underdetermined non-linear systems of par- 1 tial di erential equations. As a case of interest, the Nash-Kuiper C -isometric immersion theorem can be reformulated and proved using Convex Integration theory (cf. Gromov [18]). No such results on closed relations in jet spaces can be proved by means of the other two methods. On the other hand, many classical results in immersion-theoretic topology, such as the classi cation of immersions, are provable by all three methods. Artikel-Nr. 9783034800594

Verkäufer kontaktieren

Neu kaufen

EUR 57,68
EUR 61,72 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb