Conjectures in Arithmetic Algebraic Geometry | A Survey

Wilfred W. J. Hulsbergen

ISBN 10: 366309507X ISBN 13: 9783663095071
Verlag: Vieweg & Teubner, 2013
Neu Taschenbuch

Verkäufer preigu, Osnabrück, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 5. August 2024


Beschreibung

Beschreibung:

Conjectures in Arithmetic Algebraic Geometry | A Survey | Wilfred W. J. Hulsbergen | Taschenbuch | vii | Englisch | 2013 | Vieweg & Teubner | EAN 9783663095071 | Verantwortliche Person für die EU: Springer Vieweg in Springer Science + Business Media, Abraham-Lincoln-Str. 46, 65189 Wiesbaden, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu Print on Demand. Bestandsnummer des Verkäufers 105645783

Diesen Artikel melden

Inhaltsangabe:

In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math­ ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L­ functions, the main, motivation being the calculation of class numbers. In partic­ ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome­ try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind.

Über die Autorin bzw. den Autor: Dr. Wilfried Hulsbergen is teaching at the KMA, Breda,Niederlande.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Conjectures in Arithmetic Algebraic Geometry...
Verlag: Vieweg & Teubner
Erscheinungsdatum: 2013
Einband: Taschenbuch
Zustand: Neu
Auflage: 2. Auflage

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Wilfred W. J. Hulsbergen
ISBN 10: 366309507X ISBN 13: 9783663095071
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - In this expository text we sketch some interrelations between several famous conjectures in number theory and algebraic geometry that have intrigued math ematicians for a long period of time. Starting from Fermat's Last Theorem one is naturally led to introduce L functions, the main, motivation being the calculation of class numbers. In partic ular, Kummer showed that the class numbers of cyclotomic fields play a decisive role in the corroboration of Fermat's Last Theorem for a large class of exponents. Before Kummer, Dirichlet had already successfully applied his L-functions to the proof of the theorem on arithmetic progressions. Another prominent appearance of an L-function is Riemann's paper where the now famous Riemann Hypothesis was stated. In short, nineteenth century number theory showed that much, if not all, of number theory is reflected by properties of L-functions. Twentieth century number theory, class field theory and algebraic geome try only strengthen the nineteenth century number theorists's view. We just mention the work of E. H~cke, E. Artin, A. Weil and A. Grothendieck with his collaborators. Heeke generalized Dirichlet's L-functions to obtain results on the distribution of primes in number fields. Artin introduced his L-functions as a non-abelian generalization of Dirichlet's L-functions with a generalization of class field theory to non-abelian Galois extensions of number fields in mind. Artikel-Nr. 9783663095071

Verkäufer kontaktieren

Neu kaufen

EUR 74,89
EUR 62,24 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wilfred W. J. Hulsbergen
Verlag: Vieweg+Teubner Verlag, 2013
ISBN 10: 366309507X ISBN 13: 9783663095071
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 2nd edition. 256 pages. 9.69x6.69x0.63 inches. In Stock. Artikel-Nr. x-366309507X

Verkäufer kontaktieren

Neu kaufen

EUR 111,26
EUR 11,42 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb