Computing Statistics under Interval and Fuzzy Uncertainty: Applications to Computer Science and Engineering (Studies in Computational Intelligence, 393)

Nguyen, Hung T.; Kreinovich, Vladik; Wu, Berlin; Xiang, Gang

ISBN 10: 3642249043 ISBN 13: 9783642249044
Verlag: Springer, 2011
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783642249044_new

Diesen Artikel melden

Inhaltsangabe:

In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area.

 

Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy.

 

This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.

Von der hinteren Coverseite:

In many practical situations, we are interested in statistics characterizing a population of objects: e.g. in the mean height of people from a certain area.

Most algorithms for estimating such statistics assume that the sample values are exact. In practice, sample values come from measurements, and measurements are never absolutely accurate. Sometimes, we know the exact probability distribution of the measurement inaccuracy, but often, we only know the upper bound on this inaccuracy. In this case, we have interval uncertainty: e.g. if the measured value is 1.0, and inaccuracy is bounded by 0.1, then the actual (unknown) value of the quantity can be anywhere between 1.0 - 0.1 = 0.9 and 1.0 + 0.1 = 1.1. In other cases, the values are expert estimates, and we only have fuzzy information about the estimation inaccuracy.

This book shows how to compute statistics under such interval and fuzzy uncertainty. The resulting methods are applied to computer science (optimal scheduling of different processors), to information technology (maintaining privacy), to computer engineering (design of computer chips), and to data processing in geosciences, radar imaging, and structural mechanics.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Computing Statistics under Interval and ...
Verlag: Springer
Erscheinungsdatum: 2011
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Hung T. Nguyen, Vladik Kreinovich, Berlin Wu, Gang Xiang
Verlag: Springer-Verlag GmbH, 2011
ISBN 10: 3642249043 ISBN 13: 9783642249044
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Sehr gut. Zustand: Sehr gut | Seiten: 432 | Sprache: Englisch | Produktart: Bücher | Keine Beschreibung verfügbar. Artikel-Nr. 11201812/12

Verkäufer kontaktieren

Gebraucht kaufen

EUR 112,73
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb