Collaborative Filtering : Recommender Systems

Angshul Majumdar

ISBN 10: 103284082X ISBN 13: 9781032840826
Verlag: CRC Press, 2024
Neu Buch

Verkäufer AHA-BUCH GmbH, Einbeck, Deutschland Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 14. August 2006


Beschreibung

Beschreibung:

nach der Bestellung gedruckt Neuware - Printed after ordering - This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day. Bestandsnummer des Verkäufers 9781032840826

Diesen Artikel melden

Inhaltsangabe:

This book dives into the inner workings of recommender systems, those ubiquitous technologies that shape our online experiences. From Netflix show suggestions to personalized product recommendations on Amazon or the endless stream of curated YouTube videos, these systems power the choices we see every day.

Collaborative filtering reigns supreme as the dominant approach behind recommender systems. This book offers a comprehensive exploration of this topic, starting with memory-based techniques. These methods, known for their ease of understanding and implementation, provide a solid foundation for understanding collaborative filtering. As you progress, you’ll delve into latent factor models, the abstract and mathematical engines driving modern recommender systems.

The journey continues with exploring the concepts of metadata and diversity. You’ll discover how metadata, the additional information gathered by the system, can be harnessed to refine recommendations. Additionally, the book delves into techniques for promoting diversity, ensuring a well-balanced selection of recommendations. Finally, the book concludes with a discussion of cutting-edge deep learning models used in recommender systems.

This book caters to a dual audience. First, it serves as a primer for practicing IT professionals or data scientists eager to explore the realm of recommender systems. The book assumes a basic understanding of linear algebra and optimization but requires no prior knowledge of machine learning or programming. This makes it an accessible read for those seeking to enter this exciting field. Second, the book can be used as a textbook for a graduate-level course. To facilitate this, the final chapter provides instructors with a potential course plan.

Key features:

· This is the only book covering 25 years of research on this topic starting from late 90s to the current year.

· This book is accessible to anyone with a basic knowledge of linear algebra, unlike other volumes that require knowledge of advanced data analytics.

· It covers a wider range of topics than other books. Most others are research oriented and delves deep into a narrow area.

· This is the only book written to be a textbook on collaborative filtering and recommender systems.

· The book emphasizes on algorithms and not implementation. This makes it agnostic to programming languages. The reader is free to use whatever they are comfortable in, such as Python, R, Matlab, Java, etc.

Über die Autorin bzw. den Autor:

Angshul Majumdar is currently a professor at TCG CREST, Kolkata. Prior to that he was a professor at Indraprastha Institute of Information Technology, Delhi, India. He has been associated with the institute since 2012. Angshul did his Master’s (2009) and PhD (2012) in electrical and computer engineering from the University of British Columbia, Vancouver, Canada.

Angshul’s research interests lie in signal processing and machine learning with applications in smart grids and bioinformatics. Angshul has co-authored over 200 articles in journals and top tier conferences. He has written two books and co-edited two more and holds 7 US patents. He is an associate editor for IEEE Open Journal for Signal Processing and Elsevier Neurocomputing. In the past, he has been an associate editor for IEEE Transactions on Circuits and Systems for Video Technology.

Angshul is currently the director of student services at IEEE Signal Processing Society. Prior to that he was the chair for the education committee in the IEEE SPS membership board (2019). Angshul has also served as the chair for the chapter’s committee in the IEEE SPS membership board (2016-18). He had been the founding chair of IEEE SPS Delhi Chapter (2015-18). Angshul has been the organizing chair of two IEEE SPS Winter Schools in 2014 and 2017. He has served as the finance chair of IEEE ISBA 2017, the flagship conference of IEEE Biometrics Council.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Collaborative Filtering : Recommender Systems
Verlag: CRC Press
Erscheinungsdatum: 2024
Einband: Buch
Zustand: Neu

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Angshul Majumdar (Indraprastha Institute of Information Technology, Delhi, India)
Verlag: CRC Press, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Neu Softcover

Anbieter: moluna, Greven, Deutschland

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 1539625683

Verkäufer kontaktieren

Neu kaufen

EUR 189,92
EUR 48,99 shipping
Versand von Deutschland nach USA

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Majumdar Angshul
ISBN 10: 103284082X ISBN 13: 9781032840826
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. pp. 142. Artikel-Nr. 394739633

Verkäufer kontaktieren

Neu kaufen

EUR 217,35
EUR 7,40 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Majumdar, Angshul
Verlag: CRC Pr I Llc, 2024
ISBN 10: 103284082X ISBN 13: 9781032840826
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 152 pages. 9.19x6.13x9.21 inches. In Stock. Artikel-Nr. x-103284082X

Verkäufer kontaktieren

Neu kaufen

EUR 296,60
EUR 11,39 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb