Inhaltsangabe:
The theory of elliptic curves is distinguished by its long history and by the diversity of the methods that have been used in its study. This book treats the arithmetic theory of elliptic curves in its modern formulation, through the use of basic algebraic number theory and algebraic geometry. The book begins with a brief discussion of the necessary algebro-geometric results, and proceeds with an exposition of the geometry of elliptic curves, the formal group of an elliptic curve, elliptic curves over finite fields, the complex numbers, local fields, and global fields. The last two chapters deal with integral and rational points, including Siegel's theorem and explicit computations for the curve Y^2 = X^3 + DX. The book contains three appendices: Elliptic Curves in Characteristics 2 and 3, Group Cohomology, and a third appendix giving an overview of more advanced topics.
Críticas:
"This well-written book covers the basic facts about the geometry and arithmetic of elliptic curves, and is sure to become the standard reference in the subject. It meets the needs of at least three groups of people: students interested in doing research in Diophantine geometry, mathematicians needing a reference for standard facts about elliptic curves, and computer scientists interested in algorithms and needing an introduction to elliptic curves..."-- MATHEMATICAL REVIEWS "This well-written book covers the basic facts about the geometry and arithmetic of elliptic curves, and is sure to become the standard reference in the subject. It meets the needs of at least three groups of people: students interested in doing research in Diophantine geometry, mathematicians needing a reference for standard facts about elliptic curves, and computer scientists interested in algorithms and needing an introduction to elliptic curves..."-- MATHEMATICAL REVIEWS
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.