Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients (SpringerBriefs in Probability and Mathematical Statistics)

Lee, Haesung; Stannat, Wilhelm; Trutnau, Gerald

ISBN 10: 981193830X ISBN 13: 9789811938306
Verlag: Springer, 2022
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811938306_new

Diesen Artikel melden

Inhaltsangabe:

This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. 
The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. 
Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. 
Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.
We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution.

Über die Autorin bzw. den Autor: Dr. Haesung Lee is working at Department of Mathematics and Computer Science, Korea Science Academy of KAIST.Professor Wilhelm Stannat is working at Institut für Mathematik, Technische Universität Berlin. Professor Gerald Trutnau is a full-professor at Department of Mathematical Sciences, Seoul National University.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Analytic Theory of Itô-Stochastic ...
Verlag: Springer
Erscheinungsdatum: 2022
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Haesung Lee, Gerald Trutnau, Wilhelm Stannat
ISBN 10: 981193830X ISBN 13: 9789811938306
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher | This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity. The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in the Lp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it. Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory. Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution. Artikel-Nr. 40232340/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 33,10
EUR 105,00 shipping
Versand von Deutschland nach USA

Anzahl: 3 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lee, Haesung,Stannat, Wilhelm,Trutnau, Gerald
Verlag: Springer, 2022
ISBN 10: 981193830X ISBN 13: 9789811938306
Gebraucht paperback

Anbieter: Books From California, Simi Valley, CA, USA

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

paperback. Zustand: Very Good. Artikel-Nr. mon0003814140

Verkäufer kontaktieren

Gebraucht kaufen

EUR 44,31
EUR 4,26 shipping
Versand innerhalb von USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lee, Haesung; Stannat, Wilhelm; Trutnau, Gerald
Verlag: Springer, 2022
ISBN 10: 981193830X ISBN 13: 9789811938306
Neu Softcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 4 von 5 Sternen 4 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 401376234

Verkäufer kontaktieren

Neu kaufen

EUR 50,85
EUR 7,43 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Haesung Lee (u. a.)
Verlag: Springer Singapore, 2022
ISBN 10: 981193830X ISBN 13: 9789811938306
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Analytic Theory of Itô-Stochastic Differential Equations with Non-smooth Coefficients | Haesung Lee (u. a.) | Taschenbuch | xv | Englisch | 2022 | Springer Singapore | EAN 9789811938306 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 121623790

Verkäufer kontaktieren

Neu kaufen

EUR 54,90
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Haesung Lee
ISBN 10: 981193830X ISBN 13: 9789811938306
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch. Artikel-Nr. 9789811938306

Verkäufer kontaktieren

Neu kaufen

EUR 58,84
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Haesung Lee
ISBN 10: 981193830X ISBN 13: 9789811938306
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift.Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity.The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in theLp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it.Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory.Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution. Artikel-Nr. 9789811938306

Verkäufer kontaktieren

Neu kaufen

EUR 63,05
EUR 61,15 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb