Alternating Direction Method of Multipliers for Machine Learning

Lin, Zhouchen; Li, Huan; Fang, Cong

ISBN 10: 9811698392 ISBN 13: 9789811698392
Verlag: Springer, 2022
Neu Hardcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811698392_new

Diesen Artikel melden

Inhaltsangabe:

Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.

Über die Autorin bzw. den Autor:

Zhouchen Lin is a leading expert in the fields of machine learning and optimization. He is currently a professor with the Key Laboratory of Machine Perception (Ministry of Education), School of Artificial Intelligence, Peking University. Prof. Lin served as an area chair many times for prestigious conferences, including CVPR, ICCV, NIPS/NeurIPS, ICML, ICLR, IJCAI and AAAI. He is a Program Co-Chair of ICPR 2022 and a Senior Area Chair of ICML 2022. Prof. Lin is an associate editor of the International Journal of Computer Vision and the Optimization Methods and Software. He is a Fellow of CSIG, IAPR and IEEE.

Huan Li received a doctoral degree in machine learning from Peking University in 2019. He is currently an assistant researcher at the School of Artificial Intelligence, Nankai University. His research interests include optimization and machine learning.

Cong Fang received a doctoral degree in machine learning from Peking University in 2019. He is currently anassistant professor at the School of Artificial Intelligence, Peking University. His research interests include optimization and machine learning.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Alternating Direction Method of Multipliers ...
Verlag: Springer
Erscheinungsdatum: 2022
Einband: Hardcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Zhouchen Lin
ISBN 10: 9811698392 ISBN 13: 9789811698392
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 288 pp. Englisch. Artikel-Nr. 9789811698392

Verkäufer kontaktieren

Neu kaufen

EUR 149,79
EUR 60,00 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhouchen Lin
Verlag: Springer, Springer, 2022
ISBN 10: 9811698392 ISBN 13: 9789811698392
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Machine learning heavily relies on optimization algorithms to solve its learning models. Constrained problems constitute a major type of optimization problem, and the alternating direction method of multipliers (ADMM) is a commonly used algorithm to solve constrained problems, especially linearly constrained ones. Written by experts in machine learning and optimization, this is the first book providing a state-of-the-art review on ADMM under various scenarios, including deterministic and convex optimization, nonconvex optimization, stochastic optimization, and distributed optimization. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference book for users who are seeking a relatively universal algorithm for constrained problems. Graduate students or researchers can read it to grasp the frontiers of ADMM in machine learning in a short period of time. Artikel-Nr. 9789811698392

Verkäufer kontaktieren

Neu kaufen

EUR 155,88
EUR 63,00 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lin, Zhouchen/ Li, Huan/ Fang, Cong
ISBN 10: 9811698392 ISBN 13: 9789811698392
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 286 pages. 9.25x6.10x0.91 inches. In Stock. Artikel-Nr. x-9811698392

Verkäufer kontaktieren

Neu kaufen

EUR 217,87
EUR 14,24 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb