Inhaltsangabe:
This comprehensive 2008 introduction for beginning graduate students contains articles by the leading experts in the field. It covers basic topics such as algorithmic aspects of number fields, elliptic curves, and lattice basis reduction and advanced topics including cryptography, computational class field theory, zeta functions and L-series, and quantum computing.
Über die Autorin bzw. den Autor:
Joe Buhler received his Ph.D. from Harvard University in 1977, writing a thesis on algebraic number theory. He has taught at the Pennsylvania State Universtiy, Harvard University, and Reed College, and served as the Deputy Director at the Mathematical Sciences Research Institute in Berkeley, California. His research interests include number theory, combinatorics, algebra, and algorithmic aspects of these fields. In addition to research papers and monographs he has written popular articles on mathematics, and the mathematics of juggling. He has served on various committees of the American Mathematical Society and the Mathematics Association of America, is an editor for several journals, and has organized several major conferences in number theory. Peter Stevenhagen obtained his PhD from the University of California at Berkeley in 1988. He was charge de recherche in the CNRS in Besancon, France before forming a small number theory group at the University of Amsterdam. Since 1993, he is the organizer of the biweekly Intercity Number Theory Seminar, the Dutch national platform for research in number theory. In 2000 he was appointed at Leiden University, the oldest university in the Netherlands, which was founded in 1575. Besides his research papers, his bibliography counts various papers in number theory of popularizing and historical nature. He is a member of the board of the Dutch Mathematical Society, the Wiskundig Genootschap.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.