Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence

Sreevallabh Chivukula, Aneesh; Yang, Xinghao; Liu, Bo

ISBN 10: 3030997731 ISBN 13: 9783030997731
Verlag: Springer, 2023
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015

Dieses Exemplar ist nicht mehr verfügbar. Hier sind die ähnlichsten Treffer für Adversarial Machine Learning: Attack Surfaces, Defence Mechanisms, Learning Theories in Artificial Intelligence von Sreevallabh Chivukula, Aneesh; Yang, Xinghao; Liu, Bo.

Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783030997731_new

Diesen Artikel melden

Inhaltsangabe:

A critical challenge in deep learning is the vulnerability of deep learning networks to security attacks from intelligent cyber adversaries. Even innocuous perturbations to the training data can be used to manipulate the behaviour of deep networks in unintended ways.  In this book, we review the latest developments in adversarial attack technologies in computer vision; natural language processing; and cybersecurity with regard to multidimensional, textual and image data, sequence data, and temporal data. In turn, we assess the robustness properties of deep learning networks to produce a taxonomy of adversarial examples that characterises the security of learning systems using game theoretical adversarial deep learning algorithms. The state-of-the-art in adversarial perturbation-based privacy protection mechanisms is also reviewed.

We propose new adversary types for game theoretical objectives in non-stationary computational learning environments. Proper quantificationof the hypothesis set in the decision problems of our research leads to various functional problems, oracular problems, sampling tasks, and optimization problems. We also address the defence mechanisms currently available for deep learning models deployed in real-world environments. The learning theories used in these defence mechanisms concern data representations, feature manipulations, misclassifications costs, sensitivity landscapes, distributional robustness, and complexity classes of the adversarial deep learning algorithms and their applications.

In closing, we propose future research directions in adversarial deep learning applications for resilient learning system design and review formalized learning assumptions concerning the attack surfaces and robustness characteristics of artificial intelligence applications so as to deconstruct the contemporary adversarial deep learning designs. Given its scope, the book will be of interest to Adversarial Machine Learning practitioners and Adversarial Artificial Intelligence researchers whose work involves the design and application of Adversarial Deep Learning.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Adversarial Machine Learning: Attack ...
Verlag: Springer
Erscheinungsdatum: 2023
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Beispielbild für diese ISBN

Chivukula, Aneesh Sreevallabh/ Yang, Xinghao/ Liu, Bo/ Liu, Wei/ Zhou, Wanlei
ISBN 10: 3030997715 ISBN 13: 9783030997717
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 321 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-3030997715

Verkäufer kontaktieren

Neu kaufen

EUR 278,58
Versand: EUR 14,19
Von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb