Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis (Studies in Computational Intelligence, 510)

Mrugalski, Marcin

ISBN 10: 3319032860 ISBN 13: 9783319032863
Verlag: Springer, 2015
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9783319032863_new

Diesen Artikel melden

Inhaltsangabe:

The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.

A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.

All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications.

Von der hinteren Coverseite:

The present book is devoted to problems of adaptation of

artificial neural networks to robust fault diagnosis schemes. It

presents neural networks-based modelling and estimation techniques used

for designing robust fault diagnosis schemes for non-linear dynamic systems.

A part of the book focuses on fundamental issues such as architectures of

dynamic neural networks, methods for designing of neural networks and fault

diagnosis schemes as well as the importance of robustness. The book is of a tutorial

value and can be perceived as a good starting point for the new-comers

to this field. The book is also devoted to advanced schemes of description of

neural model uncertainty. In particular, the methods of computation of neural

networks uncertainty with robust parameter estimation are presented. Moreover,

a novel approach for system identification with the state-space GMDH

neural network is delivered.

All the concepts described in this book are illustrated by both simple

academic illustrative examples and practical applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Advanced Neural Network-Based Computational ...
Verlag: Springer
Erscheinungsdatum: 2015
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Marcin Mrugalski
Verlag: Springer, 2015
ISBN 10: 3319032860 ISBN 13: 9783319032863
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Advanced Neural Network-Based Computational Schemes for Robust Fault Diagnosis | Marcin Mrugalski | Taschenbuch | xxi | Englisch | 2015 | Springer | EAN 9783319032863 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 109582259

Verkäufer kontaktieren

Neu kaufen

EUR 95,80
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Marcin Mrugalski
ISBN 10: 3319032860 ISBN 13: 9783319032863
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The present book is devoted to problems of adaptation of artificial neural networks to robust fault diagnosis schemes. It presents neural networks-based modelling and estimation techniques used for designing robust fault diagnosis schemes for non-linear dynamic systems.A part of the book focuses on fundamental issues such as architectures of dynamic neural networks, methods for designing of neural networks and fault diagnosis schemes as well as the importance of robustness. The book is of a tutorial value and can be perceived as a good starting point for the new-comers to this field. The book is also devoted to advanced schemes of description of neural model uncertainty. In particular, the methods of computation of neural networks uncertainty with robust parameter estimation are presented. Moreover, a novel approach for system identification with the state-space GMDH neural network is delivered.All the concepts described in this book are illustrated by both simple academic illustrative examples and practical applications. Artikel-Nr. 9783319032863

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
EUR 61,62 shipping
Versand von Deutschland nach USA

Anzahl: 1 verfügbar

In den Warenkorb