Accelerated Optimization for Machine Learning: First-Order Algorithms

Lin, Zhouchen; Li, Huan; Fang, Cong

ISBN 10: 9811529124 ISBN 13: 9789811529122
Verlag: Springer, 2021
Neu Softcover

Verkäufer Ria Christie Collections, Uxbridge, Vereinigtes Königreich Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

AbeBooks-Verkäufer seit 25. März 2015


Beschreibung

Beschreibung:

In. Bestandsnummer des Verkäufers ria9789811529122_new

Diesen Artikel melden

Inhaltsangabe:

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.

Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Über die Autorin bzw. den Autor:

Zhouchen Lin is a leading expert in the fields of machine learning and computer vision. He is currently a Professor at the Key Laboratory of Machine Perception (Ministry of Education), School of EECS, Peking University. He served as an area chair for several prestigious conferences, including CVPR, ICCV, ICML, NIPS, AAAI and IJCAI. He is an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence and the International Journal of Computer Vision. He is a Fellow of IAPR and IEEE.

Huan Li received his Ph.D. degree in machine learning from Peking University in 2019. He is currently an Assistant Professor at the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics. His current research interests include optimization and machine learning.

Cong Fang received his Ph.D. degree from Peking University in 2019. He is currently a Postdoctoral Researcher at Princeton University. His research interests include machine learning and optimization.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Bibliografische Details

Titel: Accelerated Optimization for Machine ...
Verlag: Springer
Erscheinungsdatum: 2021
Einband: Softcover
Zustand: New

Beste Suchergebnisse beim ZVAB

Foto des Verkäufers

Zhouchen Lin (u. a.)
Verlag: Springer Singapore, 2021
ISBN 10: 9811529124 ISBN 13: 9789811529122
Neu Taschenbuch

Anbieter: preigu, Osnabrück, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Accelerated Optimization for Machine Learning | First-Order Algorithms | Zhouchen Lin (u. a.) | Taschenbuch | xxiv | Englisch | 2021 | Springer Singapore | EAN 9789811529122 | Verantwortliche Person für die EU: Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg, juergen[dot]hartmann[at]springer[dot]com | Anbieter: preigu. Artikel-Nr. 119981166

Verkäufer kontaktieren

Neu kaufen

EUR 138,90
EUR 70,00 shipping
Versand von Deutschland nach USA

Anzahl: 5 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhouchen Lin
ISBN 10: 9811529124 ISBN 13: 9789811529122
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. Artikel-Nr. 9789811529122

Verkäufer kontaktieren

Neu kaufen

EUR 165,03
EUR 62,11 shipping
Versand von Deutschland nach USA

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lin, Zhouchen/ Li, Huan/ Fang, Cong
ISBN 10: 9811529124 ISBN 13: 9789811529122
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 299 pages. 9.25x6.10x0.63 inches. In Stock. Artikel-Nr. x-9811529124

Verkäufer kontaktieren

Neu kaufen

EUR 229,16
EUR 11,38 shipping
Versand von Vereinigtes Königreich nach USA

Anzahl: 2 verfügbar

In den Warenkorb