Reactive Publishing
Linear algebra is the backbone of quantitative finance, powering everything from portfolio optimization and risk management to algorithmic trading and machine learning models. Whether you're an investor, trader, or risk analyst, understanding matrix operations, eigenvalues, and vector spaces is essential for developing data-driven financial strategies.
This comprehensive guide demystifies linear algebra and its real-world applications in finance, providing you with hands-on examples, Python implementations, and step-by-step explanations to sharpen your quantitative skills.
What You’ll Learn:Matrix Algebra & Financial Applications – Covariance matrices, risk modeling, and asset correlations
Eigenvalues & Principal Component Analysis (PCA) – Reduce dimensionality and uncover market factors
Markowitz Modern Portfolio Theory (MPT) – Construct efficient portfolios using optimization techniques
Linear Regression & Factor Models – Apply linear algebra to predictive analytics and risk factor analysis
Algorithmic Trading & Machine Learning – Use matrix-based models to enhance trading strategies
Traders & Investors – Improve portfolio allocation with quantitative models
Financial Analysts & Risk Managers – Master covariance matrices and eigenvalue decomposition for better risk assessment
Students & Quantitative Finance Professionals – Strengthen your mathematical foundation for machine learning and algorithmic trading
With clear explanations, real-world case studies, and Python implementations, this book is designed to turn abstract math into actionable financial insights.
Take your quantitative finance skills to the next level—get your copy today!
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 5,75 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9798312085679_new
Anzahl: Mehr als 20 verfügbar