Gauld, David Non-metrisable Manifolds

ISBN 13: 9789812872562

Non-metrisable Manifolds

0 durchschnittliche Bewertung
( 0 Bewertungen bei GoodReads )
 
9789812872562: Non-metrisable Manifolds
Vom Verlag:

Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos’s Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Neu kaufen Angebot ansehen

Versand: EUR 29,41
Von Deutschland nach USA

Versandziele, Kosten & Dauer

In den Warenkorb

Beste Suchergebnisse beim ZVAB

1.

David Gauld
Verlag: Springer-Verlag Gmbh Dez 2014 (2014)
ISBN 10: 9812872566 ISBN 13: 9789812872562
Neu Anzahl: 1
Anbieter
AHA-BUCH GmbH
(Einbeck, Deutschland)
Bewertung
[?]

Buchbeschreibung Springer-Verlag Gmbh Dez 2014, 2014. Buch. Buchzustand: Neu. 241x162x17 mm. Neuware - Manifolds fall naturally into two classes depending on whether they can be fitted with a distance measuring function or not. The former, metrisable manifolds, and especially compact manifolds, have been intensively studied by topologists for over a century, whereas the latter, non-metrisable manifolds, are much more abundant but have a more modest history, having become of increasing interest only over the past 40 years or so. The first book on this topic, this book ranges from criteria for metrisability, dynamics on non-metrisable manifolds, Nyikos's Bagpipe Theorem and whether perfectly normal manifolds are metrisable to structures on manifolds, especially the abundance of exotic differential structures and the dearth of foliations on the long plane. A rigid foliation of the Euclidean plane is described. This book is intended for graduate students and mathematicians who are curious about manifolds beyond the metrisability wall, and especially the use of Set Theory as a tool. 203 pp. Englisch. Artikel-Nr. 9789812872562

Weitere Informationen zu diesem Verkäufer | Frage an den Anbieter

Neu kaufen
EUR 90,94
Währung umrechnen

In den Warenkorb

Versand: EUR 29,41
Von Deutschland nach USA
Versandziele, Kosten & Dauer