Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modeling of bursting, with contributions from many of the leading researchers in the field.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
"All of the chapters are clearly written and for the most part would be accessible to readers who have taken at least an undergraduate course that covers modeling of neuronal dynamics ... The excitement generated by this collection of papers stems from the demonstration that appropriate interdisciplinary teams are indeed forming to tackle the outstanding issues."Mathematical Reviews
Neurons in the brain communicate with each other by transmitting sequences of electrical spikes or action potentials. One of the major challenges in neuroscience is to understand the basic physiological mechanisms underlying the complex spatiotemporal patterns of spiking activity observed during normal brain functioning, and to determine the origins of pathological dynamical states such as epileptic seizures and Parkinsonian tremors. A second major challenge is to understand how the patterns of spiking activity provide a substrate for the encoding and transmission of information, that is, how do neurons compute with spikes? It is likely that an important element of both the dynamical and computational properties of neurons is that they can exhibit bursting, which is a relatively slow rhythmic alternation between an active phase of rapid spiking and a quiescent phase without spiking. This book provides a detailed overview of the current state-of-the-art in the mathematical and computational modeling of bursting, with contributions from many of the leading researchers in the field.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
EUR 3,00 für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 10,20 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
1st ed. 1 online resource (418 p.). Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Artikel-Nr. 45106HB
Anzahl: 2 verfügbar
Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich
Zustand: New. pp. xvi + 401 Illus. Artikel-Nr. 93184885
Anzahl: 1 verfügbar