Verwandte Artikel zu Introduction to Transfer Learning: Algorithms and Practice...

Introduction to Transfer Learning: Algorithms and Practice (Machine Learning: Foundations, Methodologies, and Applications) - Softcover

 
9789811975868: Introduction to Transfer Learning: Algorithms and Practice (Machine Learning: Foundations, Methodologies, and Applications)

Inhaltsangabe

Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning.

 This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.


Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Jindong Wang is currently a senior researcher at Microsoft Research Asia. Before that, he obtained his PhD from the Institute of Computing Technology, Chinese Academy of Sciences, in 2019. His main research interests are in transfer learning, domain adaptation, domain generalization, and their applications in ubiquitous computing systems. He has co-published a Chinese-language textbook, Introduction to Transfer Learning, and numerous papers in leading journals and conferences, such as the IEEE TKDE, TNNLS, ACM TIST, NeurIPS, CVPR, IJCAI, UbiComp, and ACMMM. He was awarded the best application paper at the IJCAI'19 federated learning workshop and best paper at ICCSE'18. He has served as the publicity chair of IJCAI'19 and the transfer learning session chair of ICDM'19.

 Yiqiang Chen is currently a professor at the Institute of Computing Technology, Chinese Academy of Sciences. His main research interests are in artificial intelligence and pervasive computing. He has published more than 180 papers in leading journals and conferences such as the IEEE TKDE, AAAI, and IJCAI. He has served as the general PC chair of the IEEE UIC 2019, PCC 2017, and CWCC 2019. He is a founding committee member of the IEEE wearable and intelligent interaction committee (IWCD) and an associate editor for IEEE TETCI and IJMLC. He has won several best paper awards, including best application paper at IJCAI-FL'19, IJIT 15th anniversary best paper award, and ICCSE'18 best paper award.


Von der hinteren Coverseite

Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning.

This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a “student’s” perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice.


„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2024
  • ISBN 10 9811975868
  • ISBN 13 9789811975868
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten352

EUR 14,22 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811975837: Introduction to Transfer Learning: Algorithms and Practice (Machine Learning: Foundations, Methodologies, and Applications)

Vorgestellte Ausgabe

ISBN 10:  9811975833 ISBN 13:  9789811975837
Verlag: Springer Verlag, Singapore, 2023
Hardcover

Suchergebnisse für Introduction to Transfer Learning: Algorithms and Practice...

Beispielbild für diese ISBN

Wang, Jindong; Chen, Yiqiang
Verlag: Springer, 2024
ISBN 10: 9811975868 ISBN 13: 9789811975868
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811975868_new

Verkäufer kontaktieren

Neu kaufen

EUR 62,12
Währung umrechnen
Versand: EUR 14,22
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Yiqiang Chen
ISBN 10: 9811975868 ISBN 13: 9789811975868
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Transfer learning is one of the most important technologies in the era of artificial intelligence and deep learning. It seeks to leverage existing knowledge by transferring it to another, new domain. Over the years, a number of relevant topics have attracted the interest of the research and application community: transfer learning, pre-training and fine-tuning, domain adaptation, domain generalization, and meta-learning.This book offers a comprehensive tutorial on an overview of transfer learning, introducing new researchers in this area to both classic and more recent algorithms. Most importantly, it takes a 'student's' perspective to introduce all the concepts, theories, algorithms, and applications, allowing readers to quickly and easily enter this area. Accompanying the book, detailed code implementations are provided to better illustrate the core ideas of several important algorithms, presenting good examples for practice. Artikel-Nr. 9789811975868

Verkäufer kontaktieren

Neu kaufen

EUR 58,55
Währung umrechnen
Versand: EUR 30,66
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Wang, Jindong/ Chen, Yiqiang
Verlag: Springer Nature, 2024
ISBN 10: 9811975868 ISBN 13: 9789811975868
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 350 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-9811975868

Verkäufer kontaktieren

Neu kaufen

EUR 81,94
Währung umrechnen
Versand: EUR 11,87
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb