Verwandte Artikel zu Evolutionary Multi-Task Optimization: Foundations and...

Evolutionary Multi-Task Optimization: Foundations and Methodologies (Machine Learning: Foundations, Methodologies, and Applications) - Softcover

 
9789811956522: Evolutionary Multi-Task Optimization: Foundations and Methodologies (Machine Learning: Foundations, Methodologies, and Applications)
  • VerlagSpringer-Verlag GmbH
  • Erscheinungsdatum2025
  • ISBN 10 9811956529
  • ISBN 13 9789811956522
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten232

EUR 29,79 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811956492: Evolutionary Multi-Task Optimization: Foundations and Methodologies (Machine Learning: Foundations, Methodologies, and Applications)

Vorgestellte Ausgabe

ISBN 10:  9811956499 ISBN 13:  9789811956492
Verlag: Springer, 2023
Hardcover

Suchergebnisse für Evolutionary Multi-Task Optimization: Foundations and...

Foto des Verkäufers

Liang Feng
ISBN 10: 9811956529 ISBN 13: 9789811956522
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - A remarkable facet of the human brain is its ability to manage multiple tasks with apparent simultaneity. Knowledge learned from one task can then be used to enhance problem-solving in other related tasks. In machine learning, the idea of leveraging relevant information across related tasks as inductive biases to enhance learning performance has attracted significant interest. In contrast, attempts to emulate the human brain's ability to generalize in optimization - particularly in population-based evolutionary algorithms - have received little attention to date.Recently, a novel evolutionary search paradigm, Evolutionary Multi-Task (EMT) optimization, has been proposed in the realm of evolutionary computation. In contrast to traditional evolutionary searches, which solve a single task in a single run, evolutionary multi-tasking algorithm conducts searches concurrently on multiple search spaces corresponding to different tasks or optimization problems,each possessing a unique function landscape. By exploiting the latent synergies among distinct problems, the superior search performance of EMT optimization in terms of solution quality and convergence speed has been demonstrated in a variety of continuous, discrete, and hybrid (mixture of continuous and discrete) tasks.This book discusses the foundations and methodologies of developing evolutionary multi-tasking algorithms for complex optimization, including in domains characterized by factors such as multiple objectives of interest, high-dimensional search spaces and NP-hardness. Artikel-Nr. 9789811956522

Verkäufer kontaktieren

Neu kaufen

EUR 188,90
Währung umrechnen
Versand: EUR 29,79
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb