Verwandte Artikel zu Principal Component Analysis and Randomness Test for...

Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science) - Hardcover

 
9789811939662: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science)

Inhaltsangabe

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Mieko Tanaka-Yamawaki, former professor, Tottori University
Yumihiko Ikura, Meiji University

Von der hinteren Coverseite

This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the "meaning" of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.

First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).

Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting "trendy" business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.

Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.

The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Hervorragend | Seiten:...
Diesen Artikel anzeigen

EUR 45,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,90 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811939693: Principal Component Analysis and Randomness Test for Big Data Analysis: Practical Applications of RMT-Based Technique: 25 (Evolutionary Economics and Social Complexity Science)

Vorgestellte Ausgabe

ISBN 10:  9811939691 ISBN 13:  9789811939693
Verlag: Springer Verlag, Singapore, 2024
Softcover

Suchergebnisse für Principal Component Analysis and Randomness Test for...

Beispielbild für diese ISBN

Yumihiko Ikura, Mieko Tanaka-Yamawaki
ISBN 10: 9811939667 ISBN 13: 9789811939662
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 160 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 40310420/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 93,51
Währung umrechnen
Versand: EUR 45,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811939662_new

Verkäufer kontaktieren

Neu kaufen

EUR 129,06
Währung umrechnen
Versand: EUR 13,90
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-Yamawaki, Mieko; Ikura, Yumihiko
Verlag: Springer, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Majestic Books, Hounslow, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. Artikel-Nr. 401376229

Verkäufer kontaktieren

Neu kaufen

EUR 141,27
Währung umrechnen
Versand: EUR 7,54
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Yumihiko Ikura
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the 'meaning' of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science. First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series,C=XXT, whereXrepresents a rectangular matrix ofNrows andLcolumns andXTrepresents the transverse matrix ofX. BecauseCis symmetric, namely,C=CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformationSCS-1=SCSTusing an orthogonal matrixS. WhenNis significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation). Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting 'trendy' business sectors of the financial market over the prescribed time scale. In this case,Xconsists ofNstock- prices of lengthL, and the correlation matrixCis anNbyNsquare matrix, whose element at thei-th row andj-th column is the inner product of the price time series of the lengthLof thei-th stock and thej-th stock of the equal lengthL. Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers. The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline. Artikel-Nr. 9789811939662

Verkäufer kontaktieren

Neu kaufen

EUR 120,54
Währung umrechnen
Versand: EUR 30,05
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Yumihiko Ikura
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book presents the novel approach of analyzing large-sized rectangular-shaped numerical data (so-called big data). The essence of this approach is to grasp the 'meaning' of the data instantly, without getting into the details of individual data. Unlike conventional approaches of principal component analysis, randomness tests, and visualization methods, the authors' approach has the benefits of universality and simplicity of data analysis, regardless of data types, structures, or specific field of science.First, mathematical preparation is described. The RMT-PCA and the RMT-test utilize the cross-correlation matrix of time series, C = XXT, where X represents a rectangular matrix of N rows and L columns and XT represents the transverse matrix of X. Because C is symmetric, namely, C = CT, it can be converted to a diagonal matrix of eigenvalues by a similarity transformation SCS-1 = SCST using an orthogonal matrix S. When N is significantly large, the histogram of the eigenvalue distribution can be compared to the theoretical formula derived in the context of the random matrix theory (RMT, in abbreviation).Then the RMT-PCA applied to high-frequency stock prices in Japanese and American markets is dealt with. This approach proves its effectiveness in extracting 'trendy' business sectors of the financial market over the prescribed time scale. In this case, X consists of N stock- prices of length L, and the correlation matrix C is an N by N square matrix, whose element at the i-th row and j-th column is the inner product of the price time series of the length L of the i-th stock and the j-th stock of the equal length L.Next, the RMT-test is applied to measure randomness of various random number generators, including algorithmically generated random numbers and physically generated random numbers.The book concludes by demonstrating two applications of the RMT-test: (1) a comparison of hash functions, and (2) stock prediction by means of randomness, including a new index of off-randomness related to market decline.Springer-Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 160 pp. Englisch. Artikel-Nr. 9789811939662

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
Währung umrechnen
Versand: EUR 55,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Tanaka-yamawaki, Mieko/ Ikura, Yumihiko
Verlag: Springer Nature, 2023
ISBN 10: 9811939667 ISBN 13: 9789811939662
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 159 pages. 9.25x6.10x9.21 inches. In Stock. Artikel-Nr. x-9811939667

Verkäufer kontaktieren

Neu kaufen

EUR 167,87
Währung umrechnen
Versand: EUR 11,60
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb