Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dr. Haesung Lee is working at Department of Mathematics and Computer Science, Korea Science Academy of KAIST.Professor Wilhelm Stannat is working at Institut für Mathematik, Technische Universität Berlin. Professor Gerald Trutnau is a full-professor at Department of Mathematical Sciences, Seoul National University.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerEUR 5,81 für den Versand von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & DauerAnbieter: Buchpark, Trebbin, Deutschland
Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 144 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 40232340/1
Anzahl: 2 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9789811938306_new
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift.Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity.The approach is based on the realization of the transition semigroup associated with the solution of a stochastic differential equation as a strongly continuous semigroup in theLp-space with respect to a weight that plays the role of a sub-stationary or stationary density. This way we obtain in particular a rigorous functional analytic description of the generator of the solution of a stochastic differential equation and its full domain. The existence of such a weight is shown under broad assumptions on the coefficients. A remarkable fact is that although the weight may not be unique, many important results are independent of it.Given such a weight and semigroup, one can construct and further analyze in detail a weak solution to the stochastic differential equation combining variational techniques, regularity theory for partial differential equations, potential, and generalized Dirichlet form theory.Under classical-like or various other criteria for non-explosion we obtain as one of our main applications the existence of a pathwise unique and strong solution with an infinite lifetime. These results substantially supplement the classical case of locally Lipschitz or monotone coefficients.We further treat other types of uniqueness and non-uniqueness questions, such as uniqueness and non-uniqueness of the mentioned weights and uniqueness in law, in a certain sense, of the solution. Artikel-Nr. 9789811938306
Anzahl: 1 verfügbar
Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -This book provides analytic tools to describe local and global behavior of solutions to Itô-stochastic differential equations with non-degenerate Sobolev diffusion coefficients and locally integrable drift. Regularity theory of partial differential equations is applied to construct such solutions and to obtain strong Feller properties, irreducibility, Krylov-type estimates, moment inequalities, various types of non-explosion criteria, and long time behavior, e.g., transience, recurrence, and convergence to stationarity.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 144 pp. Englisch. Artikel-Nr. 9789811938306
Anzahl: 2 verfügbar