Verwandte Artikel zu Accelerated Optimization for Machine Learning: First-Order...

Accelerated Optimization for Machine Learning: First-Order Algorithms - Hardcover

 
9789811529092: Accelerated Optimization for Machine Learning: First-Order Algorithms

Inhaltsangabe

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.

Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Zhouchen Lin is a leading expert in the fields of machine learning and computer vision. He is currently a Professor at the Key Laboratory of Machine Perception (Ministry of Education), School of EECS, Peking University. He served as an area chair for several prestigious conferences, including CVPR, ICCV, ICML, NIPS, AAAI and IJCAI. He is an associate editor of the IEEE Transactions on Pattern Analysis and Machine Intelligence and the International Journal of Computer Vision. He is a Fellow of IAPR and IEEE.

Huan Li received his Ph.D. degree in machine learning from Peking University in 2019. He is currently an Assistant Professor at the College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics. His current research interests include optimization and machine learning.

Cong Fang received his Ph.D. degree from Peking University in 2019. He is currently a Postdoctoral Researcher at Princeton University. His research interests include machine learning and optimization.


Von der hinteren Coverseite

This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.

Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where the algorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well as for graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2020
  • ISBN 10 9811529094
  • ISBN 13 9789811529092
  • EinbandTapa dura
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten300
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

unread, some shelfwear
Diesen Artikel anzeigen

EUR 3,00 für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811529122: Accelerated Optimization for Machine Learning: First-Order Algorithms

Vorgestellte Ausgabe

ISBN 10:  9811529124 ISBN 13:  9789811529122
Verlag: Springer, 2021
Softcover

Suchergebnisse für Accelerated Optimization for Machine Learning: First-Order...

Beispielbild für diese ISBN

Lin
Verlag: Springer, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Gebraucht Hardcover Erstausgabe

Anbieter: SpringBooks, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 1. Auflage. unread, some shelfwear. Artikel-Nr. CE-2304C-SAKKO-36-1000

Verkäufer kontaktieren

Gebraucht kaufen

EUR 28,71
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Zhouchen Lin
ISBN 10: 9811529094 ISBN 13: 9789811529092
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book on optimization includes forewords by Michael I. Jordan, Zongben Xu and Zhi-Quan Luo. Machine learning relies heavily on optimization to solve problems with its learning models, and first-order optimization algorithms are the mainstream approaches. The acceleration of first-order optimization algorithms is crucial for the efficiency of machine learning.Written by leading experts in the field, this book provides a comprehensive introduction to, and state-of-the-art review of accelerated first-order optimization algorithms for machine learning. It discusses a variety of methods, including deterministic and stochastic algorithms, where thealgorithms can be synchronous or asynchronous, for unconstrained and constrained problems, which can be convex or non-convex. Offering a rich blend of ideas, theories and proofs, the book is up-to-date and self-contained. It is an excellent reference resource for users who are seeking faster optimization algorithms, as well asfor graduate students and researchers wanting to grasp the frontiers of optimization in machine learning in a short time. Artikel-Nr. 9789811529092

Verkäufer kontaktieren

Neu kaufen

EUR 164,49
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lin
Verlag: Springer, 2020
ISBN 10: 9811529094 ISBN 13: 9789811529092
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811529092_new

Verkäufer kontaktieren

Neu kaufen

EUR 158,66
Währung umrechnen
Versand: EUR 5,95
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Lin, Zhouchen/ Li, Huan/ Fang, Cong
ISBN 10: 9811529094 ISBN 13: 9789811529092
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 275 pages. 9.75x6.50x0.75 inches. In Stock. Artikel-Nr. x-9811529094

Verkäufer kontaktieren

Neu kaufen

EUR 241,77
Währung umrechnen
Versand: EUR 11,96
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb