Verwandte Artikel zu Random Ordinary Differential Equations and Their Numerical...

Random Ordinary Differential Equations and Their Numerical Solution: 85 (Probability Theory and Stochastic Modelling) - Softcover

 
9789811348433: Random Ordinary Differential Equations and Their Numerical Solution: 85 (Probability Theory and Stochastic Modelling)

Inhaltsangabe

Makes recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership

Develops numerical methods for random ODEs (RODEs)

Highlights important applications, with a focus on dynamical behavior and the biological sciences

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Professor Peter E. Kloeden has wide interests in the applications of mathematical analysis, numerical analysis, stochastic analysis and dynamical systems.  He is the coauthor of several influential books on nonautonomous dynamical systems, metric spaces of fuzzy sets, and in particular “Numerical Solutions of Stochastic Differential equations” (with E. Platen) published by Springer in 1992.  Professor Kloeden is a Fellow of the Australian Mathematical Society and the Society of Industrial and Applied Mathematics. He was awarded the W.T. & Idalia Reid Prize from Society of Applied and Industrial Mathematics in 2006.  His current interests focus on nonautonomous and random dynamical systems and their applications in the biological sciences.

Professor Xiaoying Han’s main research interests are in random and nonautonomous dynamical systems and their applications.  In addition to mathematical analysis of dynamical systems, she is also interested in modeling and simulation of applied dynamical systems in biology, chemical engineering, ecology, material sciences, etc.  She is the coauthor of the books “Applied Nonautonomous and Random Dynamical Systems” (with T. Caraballo) and “Attractors under Discretisation” (with P. E. Kloeden), published in the SpringerBrief series.

Von der hinteren Coverseite

This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs).

 

RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems.  They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense.  However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs.

 

The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology.  A basic knowledge of ordinary differential equations and numerical analysis is required. 

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2018
  • ISBN 10 981134843X
  • ISBN 13 9789811348433
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten268
  • Kontakt zum HerstellerNicht verfügbar

EUR 5,92 für den Versand von Vereinigtes Königreich nach Deutschland

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811062643: Random Ordinary Differential Equations and Their Numerical Solution: 85 (Probability Theory and Stochastic Modelling)

Vorgestellte Ausgabe

ISBN 10:  9811062641 ISBN 13:  9789811062643
Verlag: Springer, 2017
Hardcover

Suchergebnisse für Random Ordinary Differential Equations and Their Numerical...

Beispielbild für diese ISBN

Han, Xiaoying; Kloeden, Peter E.
Verlag: Springer, 2018
ISBN 10: 981134843X ISBN 13: 9789811348433
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811348433_new

Verkäufer kontaktieren

Neu kaufen

EUR 145,08
Währung umrechnen
Versand: EUR 5,92
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Peter E. Kloeden
ISBN 10: 981134843X ISBN 13: 9789811348433
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is intended to make recent results on the derivation of higher order numerical schemes for random ordinary differential equations (RODEs) available to a broader readership, and to familiarize readers with RODEs themselves as well as the closely associated theory of random dynamical systems. In addition, it demonstrates how RODEs are being used in the biological sciences, where non-Gaussian and bounded noise are often more realistic than the Gaussian white noise in stochastic differential equations (SODEs). RODEs are used in many important applications and play a fundamental role in the theory of random dynamical systems. They can be analyzed pathwise with deterministic calculus, but require further treatment beyond that of classical ODE theory due to the lack of smoothness in their time variable. Although classical numerical schemes for ODEs can be used pathwise for RODEs, they rarely attain their traditional order since the solutions of RODEs do not have sufficient smoothness to have Taylor expansions in the usual sense. However, Taylor-like expansions can be derived for RODEs using an iterated application of the appropriate chain rule in integral form, and represent the starting point for the systematic derivation of consistent higher order numerical schemes for RODEs. The book is directed at a wide range of readers in applied and computational mathematics and related areas as well as readers who are interested in the applications of mathematical models involving random effects, in particular in the biological sciences.The level of this book is suitable for graduate students in applied mathematics and related areas, computational sciences and systems biology. A basic knowledge of ordinary differential equations and numerical analysis is required. Artikel-Nr. 9789811348433

Verkäufer kontaktieren

Neu kaufen

EUR 152,32
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb