Verwandte Artikel zu Fuzzy Lie Algebras (Infosys Science Foundation Series)

Fuzzy Lie Algebras (Infosys Science Foundation Series) - Hardcover

 
9789811332203: Fuzzy Lie Algebras (Infosys Science Foundation Series)

Inhaltsangabe

This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists.

Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

MUHAMMAD AKRAM is a  Professor at the Department of Mathematics, University of the Punjab, Pakistan. He earned his PhD in fuzzy mathematics from the Government College University, Pakistan. His research interests include numerical algorithms, fuzzy graphs, fuzzy algebras, and fuzzy decision support systems. He has published five monographs and over 265 research articles in international peer-reviewed journals.

Von der hinteren Coverseite

This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists.

Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

Zustand: Hervorragend | Sprache...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für Fuzzy Lie Algebras (Infosys Science Foundation Series)

Beispielbild für diese ISBN

Muhammad Akram
ISBN 10: 9811332207 ISBN 13: 9789811332203
Gebraucht Hardcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 33126031/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 14,40
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 5 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Akram, Muhammed
Verlag: Singapore, Springer., 2018
ISBN 10: 9811332207 ISBN 13: 9789811332203
Gebraucht Hardcover

Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

XIX, 302 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Infosys Science Foundation Series in Mathematical Sciences. Sprache: Englisch. Artikel-Nr. 34656AB

Verkäufer kontaktieren

Gebraucht kaufen

EUR 16,00
Währung umrechnen
Versand: EUR 3,00
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 4 verfügbar

In den Warenkorb

Foto des Verkäufers

Muhammad Akram
ISBN 10: 9811332207 ISBN 13: 9789811332203
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists.Divided into 10 chapters, the book begins with a concise review of fuzzy set theory, Lie algebras and Lie superalgebras. In turn, Chap. 2 discusses several properties of concepts like interval-valued fuzzy Lie ideals, characterizations of Noetherian Lie algebras, quotient Lie algebras via interval-valued fuzzy Lie ideals, and interval-valued fuzzy Lie superalgebras. Chaps. 3 and 4 focus on various concepts of fuzzy Lie algebras, while Chap. 5 presents the concept of fuzzy Lie ideals of a Lie algebra over a fuzzy field. Chapter 6 is devoted to the properties of bipolar fuzzy Lie ideals, bipolar fuzzy Lie subsuperalgebras, bipolar fuzzy bracket product, solvable bipolar fuzzy Lie ideals and nilpotent bipolar fuzzy Lie ideals. Chap. 7 deals with the properties of m-polar fuzzy Lie subalgebras and m-polar fuzzy Lie ideals, while Chap. 8 addresses concepts like soft intersection Lie algebras and fuzzy soft Lie algebras. Chap. 9 deals with rough fuzzy Lie subalgebras and rough fuzzy Lie ideals, and lastly, Chap. 10 investigates certain properties of fuzzy subalgebras and ideals of n-ary Lie algebras. Artikel-Nr. 9789811332203

Verkäufer kontaktieren

Neu kaufen

EUR 102,21
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Muhammad Akram
ISBN 10: 9811332207 ISBN 13: 9789811332203
Neu Hardcover

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book explores certain structures of fuzzy Lie algebras, fuzzy Lie superalgebras and fuzzy n-Lie algebras. In addition, it applies various concepts to Lie algebras and Lie superalgebras, including type-1 fuzzy sets, interval-valued fuzzy sets, intuitionistic fuzzy sets, interval-valued intuitionistic fuzzy sets, vague sets and bipolar fuzzy sets. The book offers a valuable resource for students and researchers in mathematics, especially those interested in fuzzy Lie algebraic structures, as well as for other scientists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 324 pp. Englisch. Artikel-Nr. 9789811332203

Verkäufer kontaktieren

Neu kaufen

EUR 117,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Akram, Muhammad (Author)
Verlag: Springer, 2019
ISBN 10: 9811332207 ISBN 13: 9789811332203
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 302 pages. 9.50x6.50x0.75 inches. In Stock. Artikel-Nr. x-9811332207

Verkäufer kontaktieren

Neu kaufen

EUR 167,82
Währung umrechnen
Versand: EUR 11,57
Von Vereinigtes Königreich nach Deutschland
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb