Multiview Machine Learning - Hardcover

Sun

 
9789811330285: Multiview Machine Learning

Inhaltsangabe

This book provides a unique, in-depth discussion of multiview learning, one of the fastest developing branches in machine learning. Multiview Learning has been proved to have good theoretical underpinnings and great practical success. This book describes the models and algorithms of multiview learning in real data analysis. Incorporating multiple views to improve the generalization performance, multiview learning is also known as data fusion or data integration from multiple feature sets. This self-contained book is applicable for multi-modal learning research, and requires minimal prior knowledge of the basic concepts in the field. It is also a valuable reference resource for researchers working in the field of machine learning and also those in various application domains.  

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

Shiliang Sun received his Ph.D. degree in pattern recognition and intelligent systems from Tsinghua University, Beijing, China, in 2007. He is now a professor at the Department of Computer Science and Technology and the head of the Pattern Recognition and Machine Learning Research Group, East China Normal University, Shanghai, China. His current research interests include multiview learning, kernel methods, learning theory, probabilistic models, approximate inference, and sequential modeling. He has published 150+ research articles at peer-reviewed journals and international conferences. Prof. Sun is on the editorial board of several international journals, including IEEE Transactions on Neural Networks and Learning Systems, Information Fusion, and Pattern Recognition.

Liang Mao is a senior Ph.D. student at the Department of Computer Science and Technology and the Pattern Recognition and Machine Learning Research Group, East China Normal University, Shanghai, China.His main research interest is multiview learning and probabilistic models. 

Von der hinteren Coverseite

This book provides a unique, in-depth discussion of multiview learning, one of the fastest developing branches in machine learning. Multiview Learning has been proved to have good theoretical underpinnings and great practical success. This book describes the models and algorithms of multiview learning in real data analysis. Incorporating multiple views to improve the generalization performance, multiview learning is also known as data fusion or data integration from multiple feature sets. This self-contained book is applicable for multi-modal learning research, and requires minimal prior knowledge of the basic concepts in the field. It is also a valuable reference resource for researchers working in the field of machine learning and also those in various application domains.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9789811330308: Multiview Machine Learning

Vorgestellte Ausgabe

ISBN 10:  9811330301 ISBN 13:  9789811330308
Verlag: Springer, 2019
Softcover