Verwandte Artikel zu Fixed Point Theory in Metric Spaces: Recent Advances...

Fixed Point Theory in Metric Spaces: Recent Advances and Applications - Hardcover

 
9789811329128: Fixed Point Theory in Metric Spaces: Recent Advances and Applications

Inhaltsangabe

This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of α-ψ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky-Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials.

The book is a valuable resource for a wide audience, including graduate students and researchers.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Über die Autorin bzw. den Autor

PRAVEEN AGARWAL is Professor at the Department of Mathematics, Anand International College of Engineering, Jaipur, India. He has published over 200 articles related to special functions, fractional calculus and mathematical physics in several leading mathematics journals. His latest research has focused on partial differential equations, fixed point theory and fractional differential equations. He has been on the editorial boards of several journals, including the SCI, SCIE and SCOPUS, and he has been involved in a number of conferences. Recently, he received the Most Outstanding Researcher 2018 award for his contribution to mathematics by the Union Minister of Human Resource Development of India, Prakash Javadekar. He has received numerous international research grants.
MOHAMED JLELI is Full Professor of Mathematics at King Saud University, Saudi Arabia. He obtained his PhD degree in Pure Mathematics entitled “Constant mean curvature hypersurfaces” from the Faculty of Sciences of Paris 12, France, in 2004. He has written several papers on differential geometry, partial differential equations, evolution equations, fractional differential equations and fixed point theory. He is on the editorial board of several international journals and acts as a referee for a number of international journals in mathematics.
BESSEM SAMET is Full Professor of Applied Mathematics at King Saud University, Saudi Arabia. He obtained his PhD degree in Applied Mathematics entitled “Topological derivative method for Maxwell equations and its applications” from Paul Sabatier University, France, in 2004. His research interests include various branches of nonlinear analysis, such as fixed-point theory, partial differential equations, differential equations, fractional calculus, etc. He is the author/co-author of more than 100 published papers in respected journals. He named as one of Thomson Reuters Highly Cited Researchers for 2015–2017.

Von der hinteren Coverseite

This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of a-? contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky–Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials.

The book is a valuable resource for a wide audience, including graduate students and researchers.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Gebraucht kaufen

unread, with some shelfwear
Diesen Artikel anzeigen

EUR 90,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

EUR 13,85 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9789811348112: Fixed Point Theory in Metric Spaces: Recent Advances and Applications

Vorgestellte Ausgabe

ISBN 10:  9811348111 ISBN 13:  9789811348112
Verlag: Springer, 2018
Softcover

Suchergebnisse für Fixed Point Theory in Metric Spaces: Recent Advances...

Beispielbild für diese ISBN

Agarwal, Praveen; Jleli, Mohamed; Samet, Bessem
Verlag: Springer, 2018
ISBN 10: 9811329125 ISBN 13: 9789811329128
Gebraucht Hardcover Erstausgabe

Anbieter: SpringBooks, Berlin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Very Good. 1. Auflage. unread, with some shelfwear. Artikel-Nr. CEA-2307C-GEMSE-16-1000XS

Verkäufer kontaktieren

Gebraucht kaufen

EUR 28,88
Währung umrechnen
Versand: EUR 90,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agarwal, Praveen; Jleli, Mohamed; Samet, Bessem
Verlag: Springer, 2018
ISBN 10: 9811329125 ISBN 13: 9789811329128
Neu Hardcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789811329128_new

Verkäufer kontaktieren

Neu kaufen

EUR 116,28
Währung umrechnen
Versand: EUR 13,85
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Praveen Agarwal
ISBN 10: 9811329125 ISBN 13: 9789811329128
Neu Hardcover

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of - contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky-Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials.The book is a valuable resource for a wide audience, including graduate students and researchers. Artikel-Nr. 9789811329128

Verkäufer kontaktieren

Neu kaufen

EUR 94,06
Währung umrechnen
Versand: EUR 62,21
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb

Foto des Verkäufers

Praveen Agarwal
ISBN 10: 9811329125 ISBN 13: 9789811329128
Neu Buch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Buch. Zustand: Neu. Neuware -This book provides a detailed study of recent results in metric fixed point theory and presents several applications in nonlinear analysis, including matrix equations, integral equations and polynomial approximations. Each chapter is accompanied by basic definitions, mathematical preliminaries and proof of the main results. Divided into ten chapters, it discusses topics such as the Banach contraction principle and its converse; Ran-Reurings fixed point theorem with applications; the existence of fixed points for the class of ¿-¿ contractive mappings with applications to quadratic integral equations; recent results on fixed point theory for cyclic mappings with applications to the study of functional equations; the generalization of the Banach fixed point theorem on Branciari metric spaces; the existence of fixed points for a certain class of mappings satisfying an implicit contraction; fixed point results for a class of mappings satisfying a certain contraction involving extended simulation functions; the solvability of a coupled fixed point problem under a finite number of equality constraints; the concept of generalized metric spaces, for which the authors extend some well-known fixed point results; and a new fixed point theorem that helps in establishing a Kelisky¿Rivlin type result for q-Bernstein polynomials and modified q-Bernstein polynomials.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 180 pp. Englisch. Artikel-Nr. 9789811329128

Verkäufer kontaktieren

Neu kaufen

EUR 106,99
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

Agarwal, Praveen (Author)/ Jleli, Mohamed (Author)/ Samet, Bessem (Author)
Verlag: Springer, 2018
ISBN 10: 9811329125 ISBN 13: 9789811329128
Neu Hardcover

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Hardcover. Zustand: Brand New. 166 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-9811329125

Verkäufer kontaktieren

Neu kaufen

EUR 151,17
Währung umrechnen
Versand: EUR 28,91
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb