This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory.
The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Dong-Sheng Ding received his B.Sc. in Physics from Anhui Normal University, China in 2006. He obtained his Ph.D. in optics from the Department of Optics and Optical Engineering of the University of Science and Technology of China in 2015. His major research project in the Prof. Bao-Sen Shi group is quantum memory based on cold atoms. Subsequently, he became an Associate Professor in the same group.
This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory.
The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: AwesomeBooks, Wallingford, Vereinigtes Königreich
hardcover. Zustand: Very Good. Broad Bandwidth and High Dimensional Quantum Memory Based on Atomic Ensembles (Springer Theses) This book is in very good condition and will be shipped within 24 hours of ordering. The cover may have some limited signs of wear but the pages are clean, intact and the spine remains undamaged. This book has clearly been well maintained and looked after thus far. Money back guarantee if you are not satisfied. See all our books here, order more than 1 book and get discounted shipping. . Artikel-Nr. 7719-9789811074752
Anzahl: 1 verfügbar
Anbieter: Bahamut Media, Reading, Vereinigtes Königreich
hardcover. Zustand: Very Good. Shipped within 24 hours from our UK warehouse. Clean, undamaged book with no damage to pages and minimal wear to the cover. Spine still tight, in very good condition. Remember if you are not happy, you are covered by our 100% money back guarantee. Artikel-Nr. 6545-9789811074752
Anzahl: 1 verfügbar
Anbieter: Universitätsbuchhandlung Herta Hold GmbH, Berlin, Deutschland
xxii, 122 p. Hardcover. Versand aus Deutschland / We dispatch from Germany via Air Mail. Einband bestoßen, daher Mängelexemplar gestempelt, sonst sehr guter Zustand. Imperfect copy due to slightly bumped cover, apart from this in very good condition. Stamped. Sprache: Englisch. Artikel-Nr. 42510HB
Anzahl: 1 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Hardcover. Zustand: Brand New. 122 pages. 9.25x6.25x0.50 inches. In Stock. Artikel-Nr. x-9811074755
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This thesis presents an experimental study of quantum memory based on cold atomic ensembles and discusses photonic entanglement. It mainly focuses on experimental research on storing orbital angular momentum, and introduces readers to methods for storing a single photon carried by an image or an entanglement of spatial modes. The thesis also discusses the storage of photonic entanglement using the Raman scheme as a step toward implementing high-bandwidth quantum memory. The storage of photonic entanglement is central to achieving long-distance quantum communication based on quantum repeaters and scalable linear optical quantum computation. Addressing this key issue, the findings presented in the thesis are very promising with regard to future high-speed and high-capacity quantum communications. Artikel-Nr. 9789811074752
Anzahl: 2 verfügbar