Topics In Bifurcation Theory And Applications (2nd Edition): 3 (Advanced Series in Nonlinear Dynamics) - Hardcover

Adelmeyer, Moritz; Iooss, Gerard

 
9789810237288: Topics In Bifurcation Theory And Applications (2nd Edition): 3 (Advanced Series in Nonlinear Dynamics)

Inhaltsangabe

This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries.The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This textbook presents the most efficient analytical techniques in the local bifurcation theory of vector fields. It is centered on the theory of normal forms and its applications, including interaction with symmetries.The first part of the book reviews the center manifold reduction and introduces normal forms (with complete proofs). Basic bifurcations are studied together with bifurcations in the presence of symmetries. Special attention is given to examples with reversible vector fields, including the physical example given by the water waves. In this second edition, many problems with detailed solutions are added at the end of the first part (some systems being in infinite dimensions). The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions results directly from the analysis of the reduced system on a center manifold. In this part we also study bifurcations (simple here) from group orbits of solutions in an elementary way (avoiding heavy algebra). The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

Reseña del editor

This textbook presents efficient analytical techniques in the local bifurcation theory of vector fields. It is centred on the theory of normal forms and its applications, including interactions with symmetries. Attention is given to examples with reversible vector fields, including the physical example given by the water waves. The second part deals with the Couette-Taylor hydrodynamical stability problem, between concentric rotating cylinders. The spatial structure of various steady or unsteady solutions is covered. The text also studies bifurcations from group orbits of solutions in an elementary way. The third part analyzes bifurcations from time periodic solutions of autonomous vector fields. A normal form theory is developed, covering all cases, and emphasizing a partial Floquet reduction theory, which is applicable in infinite dimensions. Studies of period doubling as well as Arnold's resonance tongues are included in this part.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.