Verwandte Artikel zu nD-PointCloud Data Management: Continuous Levels, Adaptive...

nD-PointCloud Data Management: Continuous Levels, Adaptive Histograms, and Diverse Query Geometries (A+BE Architecture and the Built Environment) - Softcover

 
9789463665728: nD-PointCloud Data Management: Continuous Levels, Adaptive Histograms, and Diverse Query Geometries (A+BE Architecture and the Built Environment)

Inhaltsangabe

In the Geomatics domain, a point cloud refers to a data set that records the coordinates and other attributes of a huge number of points. Conceptually, each of the attributes can be regarded as a dimension to represent a specific type of information, such as time and Level of Importance (LoI). Drastically increasing collection of high dimensional point clouds raises essential demand for smart and highly efficient data management solutions. However, effective tools are missing. File-based solutions require substantial development of data structures and algorithms. Also, with such solutions, enormous effort has to be made to integrate different data types, formats and libraries. By contrast, state-of-the-art DataBase Management Systems (DBMSs) avoid these issues, because they are initially devised for generic use of data. However, DBMSs still present limitations on efficiently indexing non-uniformly distributed points, supporting continuous LoI, and operating high dimensional data. These problems motivate the PhD research which focuses on developing a new DBMS solution. It is aimed at efficiently managing and querying massive nD point clouds to support different types of applications.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Von der hinteren Coverseite

In the Geomatics domain, a point cloud refers to a data set that records the coordinates and other attributes of a huge number of points. Conceptually, each of the attributes can be regarded as a dimension to represent a specific type of information, such as time and Level of Importance (LoI). Drastically increasing collection of high dimensional point clouds raises essential demand for smart and highly efficient data management solutions. However, effective tools are missing. File-based solutions require substantial development of data structures and algorithms. Also, with such solutions, enormous effort has to be made to integrate different data types, formats and libraries. By contrast, state-of-the-art DataBase Management Systems (DBMSs) avoid these issues, because they are initially devised for generic use of data. However, DBMSs still present limitations on efficiently indexing non-uniformly distributed points, supporting continuous LoI, and operating high dimensional data. These problems motivate the PhD research which focuses on developing a new DBMS solution. It is aimed at efficiently managing and querying massive nD point clouds to support different types of applications.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagTU Delft
  • Erscheinungsdatum2022
  • ISBN 10 9463665722
  • ISBN 13 9789463665728
  • EinbandTapa blanda
  • SpracheEnglisch
  • Auflage1
  • Anzahl der Seiten204
  • Kontakt zum HerstellerNicht verfügbar

Gebraucht kaufen

Zustand: Hervorragend | Seiten:...
Diesen Artikel anzeigen

Gratis für den Versand innerhalb von/der Deutschland

Versandziele, Kosten & Dauer

Suchergebnisse für nD-PointCloud Data Management: Continuous Levels, Adaptive...

Beispielbild für diese ISBN

Liu, Haicheng
Verlag: TU Delft, 2022
ISBN 10: 9463665722 ISBN 13: 9789463665728
Gebraucht Softcover

Anbieter: Buchpark, Trebbin, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: Hervorragend. Zustand: Hervorragend | Seiten: 204 | Sprache: Englisch | Produktart: Bücher. Artikel-Nr. 41726535/1

Verkäufer kontaktieren

Gebraucht kaufen

EUR 5,69
Währung umrechnen
Versand: Gratis
Innerhalb Deutschlands
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb