Researchers in the natural sciences are faced with problems that require a novel approach to improve the quality of forecasts of processes that are sensitive to environmental conditions. Nonlinearity of a system may significantly complicate the predictability of future states: a small variation of parameters can dramatically change the dynamics, while sensitive dependence of the initial state may severely limit the predictability horizon. Uncertainties also play a role.
This volume addresses such problems by using tools from chaos theory and systems theory, adapted for the analysis of problems in the environmental sciences. Sensitive dependence on the initial state (chaos) and the parameters are analyzed using methods such as Lyapunov exponents and Monte Carlo simulation. Uncertainty in the structure and the values of parameters of a model is studied in relation to processes that depend on the environmental conditions. These methods also apply to biology and economics.
For research workers at universities and (semi)governmental institutes for the environment, agriculture, ecology, meteorology and water management, and theoretical economists.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
Researchers in the natural sciences are faced with problems that require a novel approach to improve the quality of forecasts of processes that are sensitive to environmental conditions. Nonlinearity of a system may significantly complicate the predictability of future states: a small variation of parameters can dramatically change the dynamics, while sensitive dependence of the initial state may severely limit the predictability horizon. Uncertainties also play a role.
This volume addresses such problems by using tools from chaos theory and systems theory, adapted for the analysis of problems in the environmental sciences. Sensitive dependence on the initial state (chaos) and the parameters are analyzed using methods such as Lyapunov exponents and Monte Carlo simulation. Uncertainty in the structure and the values of parameters of a model is studied in relation to processes that depend on the environmental conditions. These methods also apply to biology and economics.
For research workers at universities and (semi)governmental institutes for the environment, agriculture, ecology, meteorology and water management, and theoretical economists.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Gratis für den Versand innerhalb von/der Deutschland
Versandziele, Kosten & DauerAnbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland
Taschenbuch. Zustand: Neu. Neuware -Researchers in the natural sciences are faced with problems that require a novel approach to improve the quality of forecasts of processes that are sensitive to environmental conditions. Nonlinearity of a system may significantly complicate the predictability of future states: a small variation of parameters can dramatically change the dynamics, while sensitive dependence of the initial state may severely limit the predictability horizon. Uncertainties also play a role.This volume addresses such problems by using tools from chaos theory and systems theory, adapted for the analysis of problems in the environmental sciences. Sensitive dependence on the initial state (chaos) and the parameters are analyzed using methods such as Lyapunov exponents and Monte Carlo simulation. Uncertainty in the structure and the values of parameters of a model is studied in relation to processes that depend on the environmental conditions. These methods also apply to biology and economics.For research workers at universities and (semi)governmental institutes for the environment, agriculture, ecology, meteorology and water management, and theoretical economists.Springer Verlag GmbH, Tiergartenstr. 17, 69121 Heidelberg 664 pp. Englisch. Artikel-Nr. 9789401044165
Anzahl: 2 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - Researchers in the natural sciences are faced with problems that require a novel approach to improve the quality of forecasts of processes that are sensitive to environmental conditions. Nonlinearity of a system may significantly complicate the predictability of future states: a small variation of parameters can dramatically change the dynamics, while sensitive dependence of the initial state may severely limit the predictability horizon. Uncertainties also play a role. This volume addresses such problems by using tools from chaos theory and systems theory, adapted for the analysis of problems in the environmental sciences. Sensitive dependence on the initial state (chaos) and the parameters are analyzed using methods such as Lyapunov exponents and Monte Carlo simulation. Uncertainty in the structure and the values of parameters of a model is studied in relation to processes that depend on the environmental conditions. These methods also apply to biology and economics. For research workers at universities and (semi)governmental institutes for the environment, agriculture, ecology, meteorology and water management, and theoretical economists. Artikel-Nr. 9789401044165
Anzahl: 1 verfügbar
Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich
Zustand: New. In. Artikel-Nr. ria9789401044165_new
Anzahl: Mehr als 20 verfügbar
Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich
Paperback. Zustand: Brand New. 653 pages. 9.45x6.30x1.50 inches. In Stock. Artikel-Nr. x-9401044163
Anzahl: 2 verfügbar