Zu dieser ISBN ist aktuell kein Angebot verfügbar.
1 The Functor Jp1.- 1.1 The Bundle Jp1M ? M.- Functorial properties of Jp1.- Canonical lifts of vector fields to Jp1M.- Two particular cases.- Diffeomorphisms ? Mp,1 and ? M1,p.- 1.2 Jp1G for a Lie group G.- Jp1G acting on Jp1M.- 1.3 Jp1V for a vector space V.- Jp1g for a Lie algebra g.- 1.4 The embedding jp.- V = Rn.- 2 Prolongation of G-structures.- 2.1 Imbedding of Jn1FM into FFM.- 2.2 Prolongation of G-structures to FM.- 2.3 Integrability.- 2.4 Applications.- Linear endomorphisms.- Bilinear forms.- Linear groups.- 3 Vector-valued differential forms.- 3.1 General Theory.- Particular cases.- V =? s1Rn.- V =? sRn.- 3.2 Applications.- Prolongation of functions and forms.- Complete lift of functions and tensor fields.- Prolongation of G-structures.- 4 Prolongation of linear connections.- 4.1 Forms with values in a Lie algebra.- 4.2 Prolongation of connections.- Local expressions.- Covariant differentiation operators.- 4.3 Complete lift of linear connections.- Parallelism.- 4.4 Connections adapted to G-structures.- 4.5 Geodesics of ?C.- 4.6 Complete lift of derivations.- 5 Diagonal lifts.- 5.1 Diagonal lifts.- 5.2 Applications.- G-structures from (1, 1)-tensors.- G-structures from (0, 2)-tensors.- General tensor fields.- 6 Horizontal lifts.- 6.1 General theory.- 6.2 Applications.- Tensor fields.- Linear connections.- Geodesics.- Covariant derivative.- Canonical flat connection on FM.- Derivations.- 7 Lift GD of a Riemannian G to FM.- 7.1 GD, G of type (0,2).- 7.2 Levi-Civita connection of GD.- 7.3 Curvature of GD.- 7.4 Bundle of orthonormal frames.- 7.5 Geodesics of GD.- 7.6 Applications.- f-structures on FM.- Almost Hermitian structure.- Harmonic frame bundle maps.- 8 Constructing G-structures on FM.- 8.1 ?-associated G-structures on FM.- 8.2 Defined by (1,1)-tensor fields.- 8.3 Application to polynomial structures on FM.- Example 1: f(3, 1)-structure on FM.- Example 2: f(3, -1)-structure on FM.- Example 3: f(4,2)-structure on FM.- Example 4: f(4, -2)-structure on FM.- Example 5: A family of examples.- 8.4 G-structures defined by (0,2)-tensor fields.- 8.5 Applications to almost complex and Hermitian structures.- 8.6 Application to spacetime structure.- 9 Systems of connections.- 9.1 Connections on a fibred manifold.- Local expressions.- Examples of linear connections.- Notation for sections.- 9.2 Principal bundle connections.- Summary for the principal bundle of frames.- 9.3 Systems of connections.- Examples of systems of linear connections.- 9.4 Universal Connections.- 9.5 Applications.- Universal holonomy.- Weil's Theorem.- Spacetime singularities.- Parametric models in statistical theory.- 10 The Functor Jp2.- 10.1 The Bundle Jp2M ? M.- Functorial properties of Jp2.- 10.2 The second order frame bundle.- 10.3 Second order connections.- 10.4 Geodesics of second order.- 10.5 G-structures on F2M.- 10.6 Vector fields on F2M.- 10.7 Diagonal lifts of tensor fields.- Algebraic preliminaries.- Diagonal lifts of 1-forms.- Diagonal lifts of (1, 1)-tensor fields.- Diagonal lifts of (0, 2)-tensor fields.- F2M for an almost Hermitian manifold M.- 10.8 Natural prolongations of G-structures.- Imbedding of Jn2FM into FF2M.- Applications.- Linear endomorphisms.- Bilinear forms.- 10.9 Diagonal prolongation of G-structures.- Applications.- Linear endomorphisms.- Bilinear forms.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
(Keine Angebote verfügbar)
Buch Finden: Kaufgesuch aufgebenSie kennen Autor und Titel des Buches und finden es trotzdem nicht auf ZVAB? Dann geben Sie einen Suchauftrag auf und wir informieren Sie automatisch, sobald das Buch verfügbar ist!
Kaufgesuch aufgeben