Verwandte Artikel zu Differentiable and Complex Dynamics of Several Variables:...

Differentiable and Complex Dynamics of Several Variables: 483 (Mathematics and Its Applications) - Softcover

 
9789048152469: Differentiable and Complex Dynamics of Several Variables: 483 (Mathematics and Its Applications)

Reseña del editor

The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - \lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R.

Reseña del editor

This book gives a comprehensive and up-to-date survey on dynamics and related topics, such as Fatou-Julia type theory, the Ergodic theorem and invariant sets, hyperbolicity in differentiable or complex dynamics, iterant ion theory on Pm, complex dynamics in Cm and the foundations of differentiable and complex dynamics. The main aims of this volume are, firstly, to advance the study of the above-named topics and to establish the corresponding Fatou-Julia results for complex manifolds, and, secondly, to provide some advanced account of dynamical systems within the framework of geometry and analysis, presented from a unified approach applicable to both real and complex manifolds.
Audience: This work will be of interest to graduate students and researchers involved in the fields of global analysis, analysis on manifolds, several complex variables and analytic spaces, partial differential equations, differential geometry, measure and integration.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

  • VerlagSpringer
  • Erscheinungsdatum2010
  • ISBN 10 9048152461
  • ISBN 13 9789048152469
  • EinbandTapa blanda
  • SpracheEnglisch
  • Anzahl der Seiten352

EUR 14,07 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780792357711: Differentiable and Complex Dynamics of Several Variables: 483 (Mathematics and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  079235771X ISBN 13:  9780792357711
Verlag: Springer, 1999
Hardcover

Suchergebnisse für Differentiable and Complex Dynamics of Several Variables:...

Beispielbild für diese ISBN

Pei-Chu Hu, Pei-Chu; Chung-Chun Yang
Verlag: Springer, 2010
ISBN 10: 9048152461 ISBN 13: 9789048152469
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789048152469_new

Verkäufer kontaktieren

Neu kaufen

EUR 61,47
Währung umrechnen
Versand: EUR 14,07
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Foto des Verkäufers

Chung-Chun Yang
Verlag: Springer Netherlands, 2010
ISBN 10: 9048152461 ISBN 13: 9789048152469
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - The development of dynamics theory began with the work of Isaac Newton. In his theory the most basic law of classical mechanics is f = ma, which describes the motion n in IR. of a point of mass m under the action of a force f by giving the acceleration a. If n the position of the point is taken to be a point x E IR. , and if the force f is supposed to be a function of x only, Newton's Law is a description in terms of a second-order ordinary differential equation: J2x m dt = f(x). 2 It makes sense to reduce the equations to first order by defining the velo city as an extra n independent variable by v = :i; = ~~ E IR. . Then x = v, mv = f(x). L. Euler, J. L. Lagrange and others studied mechanics by means of an analytical method called analytical dynamics. Whenever the force f is represented by a gradient vector field f = - lU of the potential energy U, and denotes the difference of the kinetic energy and the potential energy by 1 L(x,v) = 2'm(v,v) - U(x), the Newton equation of motion is reduced to the Euler-Lagrange equation ~~ are used as the variables, the Euler-Lagrange equation can be If the momenta y written as . 8L y= 8x' Further, W. R. Artikel-Nr. 9789048152469

Verkäufer kontaktieren

Neu kaufen

EUR 58,56
Währung umrechnen
Versand: EUR 30,66
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb