Verwandte Artikel zu Singular Semi-Riemannian Geometry: 366 (Mathematics...

Singular Semi-Riemannian Geometry: 366 (Mathematics and Its Applications) - Softcover

 
9789048146895: Singular Semi-Riemannian Geometry: 366 (Mathematics and Its Applications)

Inhaltsangabe

This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This book is an exposition of "Singular Semi-Riemannian Geometry"- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi­ Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi­ Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I.

Reseña del editor

This volume is an exposition of singular semi-Riemannian geometry, i.e. the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where metric tensors are assumed to be nondegenerate. In the literature manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi-Riemannian manifolds. Here, the intrinsic structure of a manifold with a degenerate metric tensor is studied first, and then it is studied extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold.
The book is divided into three parts. The four chapters of Part I deal with singular semi-Riemannian manifolds. Part II is concerned with singular Kähler manifolds in four chapters parallel to Part I. Finally, Part III consists of three chapters treating singular quaternionic Kähler manifolds.
Audience: This self-contained book will be of interest to graduate students of differential geometry, who have some background knowledge on the subject of complex manifolds already.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 13,80 für den Versand von Vereinigtes Königreich nach USA

Versandziele, Kosten & Dauer

Weitere beliebte Ausgaben desselben Titels

9780792339960: Singular Semi-Riemannian Geometry: 366 (Mathematics and Its Applications)

Vorgestellte Ausgabe

ISBN 10:  0792339967 ISBN 13:  9780792339960
Verlag: Springer, 1996
Hardcover

Suchergebnisse für Singular Semi-Riemannian Geometry: 366 (Mathematics...

Beispielbild für diese ISBN

Kupeli, D.N. N.
Verlag: Springer, 2010
ISBN 10: 9048146895 ISBN 13: 9789048146895
Neu Softcover

Anbieter: Ria Christie Collections, Uxbridge, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Zustand: New. In. Artikel-Nr. ria9789048146895_new

Verkäufer kontaktieren

Neu kaufen

EUR 111,70
Währung umrechnen
Versand: EUR 13,80
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: Mehr als 20 verfügbar

In den Warenkorb

Beispielbild für diese ISBN

D.N. Kupeli
Verlag: Springer Netherlands, 1996
ISBN 10: 9048146895 ISBN 13: 9789048146895
Neu Paperback

Anbieter: Revaluation Books, Exeter, Vereinigtes Königreich

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Paperback. Zustand: Brand New. 192 pages. 9.25x6.10x0.44 inches. In Stock. Artikel-Nr. x-9048146895

Verkäufer kontaktieren

Neu kaufen

EUR 150,35
Währung umrechnen
Versand: EUR 11,52
Von Vereinigtes Königreich nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb

Foto des Verkäufers

D. N. Kupeli
Verlag: Springer Netherlands, 2010
ISBN 10: 9048146895 ISBN 13: 9789048146895
Neu Taschenbuch

Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Druck auf Anfrage Neuware - Printed after ordering - This book is an exposition of 'Singular Semi-Riemannian Geometry'- the study of a smooth manifold furnished with a degenerate (singular) metric tensor of arbitrary signature. The main topic of interest is those cases where the metric tensor is assumed to be nondegenerate. In the literature, manifolds with degenerate metric tensors have been studied extrinsically as degenerate submanifolds of semi Riemannian manifolds. One major aspect of this book is first to study the intrinsic structure of a manifold with a degenerate metric tensor and then to study it extrinsically by considering it as a degenerate submanifold of a semi-Riemannian manifold. This book is divided into three parts. Part I deals with singular semi Riemannian manifolds in four chapters. In Chapter I, the linear algebra of indefinite real inner product spaces is reviewed. In general, properties of certain geometric tensor fields are obtained purely from the algebraic point of view without referring to their geometric origin. Chapter II is devoted to a review of covariant derivative operators in real vector bundles. Chapter III is the main part of this book where, intrinsically, the Koszul connection is introduced and its curvature identities are obtained. In Chapter IV, an application of Chapter III is made to degenerate submanifolds of semi-Riemannian manifolds and Gauss, Codazzi and Ricci equations are obtained. Part II deals with singular Kahler manifolds in four chapters parallel to Part I. Artikel-Nr. 9789048146895

Verkäufer kontaktieren

Neu kaufen

EUR 112,77
Währung umrechnen
Versand: EUR 61,50
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 1 verfügbar

In den Warenkorb