Extensions of Minimal Transformation Groups - Hardcover

Bronstein, I.U.

 
9789028603684: Extensions of Minimal Transformation Groups

Inhaltsangabe

This edition is an almost exact translation of the original Russian text. A few improvements have been made in the present­ ation. The list of references has been enlarged to include some papers published more recently, and the latter are marked with an asterisk. THE AUTHOR vii LIST OF SYMBOLS M = M(X,T,rr. ) 1,3. 3 A(X,T) 2·7. 3 M(R) 2·9. 4 2 C [(Y ,T ,p) ,G,h] 3·16. 6 P = P(X,T,rr. ) 3,16. 12 1’3. 3 C9v [(Y ,T ,p) ,G,h] Px 2·8. 9 E = E(X,T,rr. ) 1,4. 7 Q = Q(X,T,rr. ) 1,3. 3 3,12. 8 Ey Q": = Q":(X ,T, rr. ) = Q#(X,T,rr. ) Ext[(Y,T,p),G,h] 3,16. 4 Ext9v[(Y,T,p),G,h] 3,16. 12 2·8. 31 Q":(R) = Q#(R) 3·13. 5 3,12. 12 Gy 3,15. 4 Sx(A) 2,8. 18 G(X,Y) SeA) 2·8. 22 2 3,16. 8 H [cY,T,rr. ),G,h] HE, (X,T,rr. ) = (X,T) 3’12. 12 1’1. 1 Y (X,T,rr. ,G,a) 4·21. 4 3’16. 1 Hef) HK(f) 4·21. 9 H(X,T) 2,7. 3 1- 3,19. 1 L = L(X,T,rr. ) 1,3. 3 viii I NTRODUCTI ON 1. It is well known that an autonomous system of ordinary dif­ ferential equations satisfying conditions that ensure uniqueness and extendibility of solutions determines a flow, i. e. a one­ parameter transformation group. G. D.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

Reseña del editor

This edition is an almost exact translation of the original Russian text. A few improvements have been made in the present­ ation. The list of references has been enlarged to include some papers published more recently, and the latter are marked with an asterisk. THE AUTHOR vii LIST OF SYMBOLS M = M(X,T,rr. ) 1,3. 3 A(X,T) 2·7. 3 M(R) 2·9. 4 2 C [(Y ,T ,p) ,G,h] 3·16. 6 P = P(X,T,rr. ) 3,16. 12 1'3. 3 C9v [(Y ,T ,p) ,G,h] Px 2·8. 9 E = E(X,T,rr. ) 1,4. 7 Q = Q(X,T,rr. ) 1,3. 3 3,12. 8 Ey Q": = Q":(X ,T, rr. ) = Q#(X,T,rr. ) Ext[(Y,T,p),G,h] 3,16. 4 Ext9v[(Y,T,p),G,h] 3,16. 12 2·8. 31 Q":(R) = Q#(R) 3·13. 5 3,12. 12 Gy 3,15. 4 Sx(A) 2,8. 18 G(X,Y) SeA) 2·8. 22 2 3,16. 8 H [cY,T,rr. ),G,h] HE, (X,T,rr. ) = (X,T) 3'12. 12 1'1. 1 Y (X,T,rr. ,G,a) 4·21. 4 3'16. 1 Hef) HK(f) 4·21. 9 H(X,T) 2,7. 3 1- 3,19. 1 L = L(X,T,rr. ) 1,3. 3 viii I NTRODUCTI ON 1. It is well known that an autonomous system of ordinary dif­ ferential equations satisfying conditions that ensure uniqueness and extendibility of solutions determines a flow, i. e. a one­ parameter transformation group. G. D.

„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.

Weitere beliebte Ausgaben desselben Titels

9789400995611: Extensions of Minimal Transformation Groups

Vorgestellte Ausgabe

ISBN 10:  940099561X ISBN 13:  9789400995611
Verlag: Springer, 2011
Softcover