This edition is an almost exact translation of the original Russian text. A few improvements have been made in the present ation. The list of references has been enlarged to include some papers published more recently, and the latter are marked with an asterisk. THE AUTHOR vii LIST OF SYMBOLS M = M(X,T,rr. ) 1,3. 3 A(X,T) 2·7. 3 M(R) 2·9. 4 2 C [(Y ,T ,p) ,G,h] 3·16. 6 P = P(X,T,rr. ) 3,16. 12 1’3. 3 C9v [(Y ,T ,p) ,G,h] Px 2·8. 9 E = E(X,T,rr. ) 1,4. 7 Q = Q(X,T,rr. ) 1,3. 3 3,12. 8 Ey Q": = Q":(X ,T, rr. ) = Q#(X,T,rr. ) Ext[(Y,T,p),G,h] 3,16. 4 Ext9v[(Y,T,p),G,h] 3,16. 12 2·8. 31 Q":(R) = Q#(R) 3·13. 5 3,12. 12 Gy 3,15. 4 Sx(A) 2,8. 18 G(X,Y) SeA) 2·8. 22 2 3,16. 8 H [cY,T,rr. ),G,h] HE, (X,T,rr. ) = (X,T) 3’12. 12 1’1. 1 Y (X,T,rr. ,G,a) 4·21. 4 3’16. 1 Hef) HK(f) 4·21. 9 H(X,T) 2,7. 3 1- 3,19. 1 L = L(X,T,rr. ) 1,3. 3 viii I NTRODUCTI ON 1. It is well known that an autonomous system of ordinary dif ferential equations satisfying conditions that ensure uniqueness and extendibility of solutions determines a flow, i. e. a one parameter transformation group. G. D.
Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.
This edition is an almost exact translation of the original Russian text. A few improvements have been made in the present ation. The list of references has been enlarged to include some papers published more recently, and the latter are marked with an asterisk. THE AUTHOR vii LIST OF SYMBOLS M = M(X,T,rr. ) 1,3. 3 A(X,T) 2·7. 3 M(R) 2·9. 4 2 C [(Y ,T ,p) ,G,h] 3·16. 6 P = P(X,T,rr. ) 3,16. 12 1'3. 3 C9v [(Y ,T ,p) ,G,h] Px 2·8. 9 E = E(X,T,rr. ) 1,4. 7 Q = Q(X,T,rr. ) 1,3. 3 3,12. 8 Ey Q": = Q":(X ,T, rr. ) = Q#(X,T,rr. ) Ext[(Y,T,p),G,h] 3,16. 4 Ext9v[(Y,T,p),G,h] 3,16. 12 2·8. 31 Q":(R) = Q#(R) 3·13. 5 3,12. 12 Gy 3,15. 4 Sx(A) 2,8. 18 G(X,Y) SeA) 2·8. 22 2 3,16. 8 H [cY,T,rr. ),G,h] HE, (X,T,rr. ) = (X,T) 3'12. 12 1'1. 1 Y (X,T,rr. ,G,a) 4·21. 4 3'16. 1 Hef) HK(f) 4·21. 9 H(X,T) 2,7. 3 1- 3,19. 1 L = L(X,T,rr. ) 1,3. 3 viii I NTRODUCTI ON 1. It is well known that an autonomous system of ordinary dif ferential equations satisfying conditions that ensure uniqueness and extendibility of solutions determines a flow, i. e. a one parameter transformation group. G. D.
„Über diesen Titel“ kann sich auf eine andere Ausgabe dieses Titels beziehen.
Anbieter: Mike's Library LLC, Plymouth, PA, USA
Hardcover. Zustand: Very Good. Zustand des Schutzumschlags: No Dust Jacket. Library stamps/marks/labels/pocket residue, otherwise light wear. Solid hardcover.; Translation of: Rasshireniia minimal'nykh grupp preobrazovanii.; Ex-Library; 328 pages. Artikel-Nr. 7879
Anbieter: Antiquariat Bookfarm, Löbnitz, Deutschland
Hardcover. Ex-library with stamp and library-signature. GOOD condition, some traces of use. Ancien Exemplaire de bibliothèque avec signature et cachet. BON état, quelques traces d'usure. Ehem. Bibliotheksexemplar mit Signatur und Stempel. GUTER Zustand, ein paar Gebrauchsspuren. 54 BRO 9789028603684 Sprache: Englisch Gewicht in Gramm: 550. Artikel-Nr. 2502728
Anzahl: 1 verfügbar
Anbieter: Attic Books (ABAC, ILAB), London, ON, Kanada
Hardcover. Zustand: Fine. Zustand des Schutzumschlags: Very good. English edition. viii, 319 p. 25 cm. Green cloth in orange dustjacket. Jacket has faded spine and a bit of wear and soiling. Preface to English edition, list of symbols, bibliography, and subject index. Artikel-Nr. 157318
Anzahl: 1 verfügbar
Anbieter: moluna, Greven, Deutschland
Gebunden. Zustand: New. I Topological Transformation Groups.- 1.1 Basic Definitions.- 1.2 Recursion.- 1.3 Relations.- 1.4 The Ellis Semigroup.- 1.5 Pointwise Almost Periodic Transformation Groups.- 1.6 Distal and Equicontinuous Transformation Groups.- II Minimal Transformation Gro. Artikel-Nr. 458794533
Anzahl: Mehr als 20 verfügbar
Anbieter: AHA-BUCH GmbH, Einbeck, Deutschland
Buch. Zustand: Neu. Neuware - This edition is an almost exact translation of the original Russian text. A few improvements have been made in the present ation. The list of references has been enlarged to include some papers published more recently, and the latter are marked with an asterisk. THE AUTHOR vii LIST OF SYMBOLS M = M(X,T,rr. ) 1,3. 3 A(X,T) 2 7. 3 M(R) 2 9. 4 2 C [(Y ,T ,p) ,G,h] 3 16. 6 P = P(X,T,rr. ) 3,16. 12 1'3. 3 C9v [(Y ,T ,p) ,G,h] Px 2 8. 9 E = E(X,T,rr. ) 1,4. 7 Q = Q(X,T,rr. ) 1,3. 3 3,12. 8 Ey Q': = Q':(X ,T, rr. ) = Q#(X,T,rr. ) Ext[(Y,T,p),G,h] 3,16. 4 Ext9v[(Y,T,p),G,h] 3,16. 12 2 8. 31 Q':(R) = Q#(R) 3 13. 5 3,12. 12 Gy 3,15. 4 Sx(A) 2,8. 18 G(X,Y) SeA) 2 8. 22 2 3,16. 8 H [cY,T,rr. ),G,h] HE, (X,T,rr. ) = (X,T) 3'12. 12 1'1. 1 Y (X,T,rr. ,G,a) 4 21. 4 3'16. 1 Hef) HK(f) 4 21. 9 H(X,T) 2,7. 3 1- 3,19. 1 L = L(X,T,rr. ) 1,3. 3 viii I NTRODUCTI ON 1. It is well known that an autonomous system of ordinary dif ferential equations satisfying conditions that ensure uniqueness and extendibility of solutions determines a flow, i. e. a one parameter transformation group. G. D. Artikel-Nr. 9789028603684
Anzahl: 2 verfügbar