Verwandte Artikel zu Harnessing Data Types for Energy Efficiency: Innovative...

Harnessing Data Types for Energy Efficiency: Innovative Cloud Approach: From Theory to Practice: Designing and Assessing Energy-Efficient Load Balancing Algorithms for Cloud Computing - Softcover

 
9786207487295: Harnessing Data Types for Energy Efficiency: Innovative Cloud Approach: From Theory to Practice: Designing and Assessing Energy-Efficient Load Balancing Algorithms for Cloud Computing

Inhaltsangabe

Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms—Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF—are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.

Die Inhaltsangabe kann sich auf eine andere Ausgabe dieses Titels beziehen.

EUR 60,00 für den Versand von Deutschland nach USA

Versandziele, Kosten & Dauer

Suchergebnisse für Harnessing Data Types for Energy Efficiency: Innovative...

Foto des Verkäufers

Muhammad Junaid
ISBN 10: 620748729X ISBN 13: 9786207487295
Neu Taschenbuch

Anbieter: buchversandmimpf2000, Emtmannsberg, BAYE, Deutschland

Verkäuferbewertung 5 von 5 Sternen 5 Sterne, Erfahren Sie mehr über Verkäufer-Bewertungen

Taschenbuch. Zustand: Neu. Neuware -Maintaining accuracy in load balancing using metaheuristics poses challenges despite recent hybrid approaches. Optimized metaheuristic methods are employed to balance loads in the cloud efficiently. Multi-objective Quality of Service (QoS) metrics like reduced SLA violations, makespan, high throughput, and low energy consumption are crucial. Cloud applications, being computation-intensive, demand effective load balancing to prevent poor solutions due to exponential memory growth.To enhance load balancing in cloud computing, a new hybrid model is proposed, performing file classification using Filetype formatting. Three algorithms¿Ant Colony Optimization using Filetype Formatting (ACOFTF), Data Format Classification using Support Vector Machine (DFC-SVM), and Datatype Formatting DFTF/DTF¿are developed.Overall, the proposed hybrid metaheuristic approaches offer promising solutions for enhancing load balancing in cloud computing environments.Books on Demand GmbH, Überseering 33, 22297 Hamburg 356 pp. Englisch. Artikel-Nr. 9786207487295

Verkäufer kontaktieren

Neu kaufen

EUR 96,90
Währung umrechnen
Versand: EUR 60,00
Von Deutschland nach USA
Versandziele, Kosten & Dauer

Anzahl: 2 verfügbar

In den Warenkorb